Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Space»“Green Bananas” – New Research Shows Exploding Stars May Have Caused Mass Extinction on Earth
    Space

    “Green Bananas” – New Research Shows Exploding Stars May Have Caused Mass Extinction on Earth

    By University of Illinois at Urbana-ChampaignAugust 19, 20203 Comments5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Supernova Simulation Compressing Solar Wind
    A team of researchers led by professor Brian Fields hypothesizes that a supernova about 65 light-years away may have contributed to the ozone depletion and subsequent mass extinction of the late Devonian Period, 359 million years ago. Pictured is a simulation of a nearby supernova colliding with and compressing the solar wind. Earth’s orbit, the blue dashed circle, and the Sun, red dot, are shown for scale. Credit: Graphic courtesy Jesse Miller

    Imagine reading by the light of an exploded star, brighter than a full moon – it might be fun to think about, but this scene is the prelude to a disaster when the radiation devastates life as we know it. Killer cosmic rays from nearby supernovae could be the culprit behind at least one mass extinction event, researchers said, and finding certain radioactive isotopes in Earth’s rock record could confirm this scenario.

    A new study led by University of Illinois, Urbana-Champaign astronomy and physics professor Brian Fields explores the possibility of astronomical events being responsible for an extinction event that occurred 359 million years ago, at the boundary between the Devonian and Carboniferous periods. 

    The paper is published in the Proceedings of the National Academy of Sciences.

    The team concentrated on Devonian-Carboniferous boundary because those rocks contain hundreds of thousands of generations of plant spores that appear to be sunburnt by ultraviolet light – evidence of a long-lasting ozone-depletion event.

    “Earth-based catastrophes such as large-scale volcanism and global warming can destroy the ozone layer, too, but evidence for those is inconclusive for the time interval in question,” Fields said. “Instead, we propose that one or more supernova explosions, about 65 light-years away from Earth, could have been responsible for the protracted loss of ozone.”

    “To put this into perspective, one of the closest supernova threats today is from the star Betelgeuse, which is over 600 light-years away and well outside of the kill distance of 25 light-years,” said graduate student and study co-author Adrienne Ertel.

     The team explored other astrophysical causes for ozone depletion, such as meteorite impacts, solar eruptions and gamma-ray bursts. “But these events end quickly and are unlikely to cause the long-lasting ozone depletion that happened at the end of the Devonian period,” said graduate student and study co-author Jesse Miller.

    A supernova, on the other hand, delivers a one-two punch, the researchers said. The explosion immediately bathes Earth with damaging UV, X-rays and gamma rays. Later, the blast of supernova debris slams into the solar system, subjecting the planet to long-lived irradiation from cosmic rays accelerated by the supernova. The damage to Earth and its ozone layer can last for up to 100,000 years.

    However, fossil evidence indicates a 300,000-year decline in biodiversity leading up to the Devonian-Carboniferous mass extinction, suggesting the possibility of multiple catastrophes, maybe even multiple supernovae explosions. “This is entirely possible,” Miller said. “Massive stars usually occur in clusters with other massive stars, and other supernovae are likely to occur soon after the first explosion.”

    The team said the key to proving that a supernova occurred would be to find the radioactive isotopes plutonium-244 and samarium-146 in the rocks and fossils deposited at the time of extinction. “Neither of these isotopes occurs naturally on Earth today, and the only way they can get here is via cosmic explosions,” said undergraduate student and co-author Zhenghai Liu.

    The radioactive species born in the supernova are like green bananas, Fields said. “When you see green bananas in Illinois, you know they are fresh, and you know they did not grow here. Like bananas, Pu-244 and Sm-146 decay over time. So if we find these radioisotopes on Earth today, we know they are fresh and not from here – the green bananas of the isotope world – and thus the smoking guns of a nearby supernova.”

    Researchers have yet to search for Pu-244 or Sm-146 in rocks from the Devonian-Carboniferous boundary. Fields’ team said its study aims to define the patterns of evidence in the geological record that would point to supernova explosions.

    “The overarching message of our study is that life on Earth does not exist in isolation,” Fields said. “We are citizens of a larger cosmos, and the cosmos intervenes in our lives – often imperceptibly, but sometimes ferociously.”

    Reference: “Supernova triggers for end-Devonian extinctions” by Brian D. Fields, Adrian L. Melott, John Ellis, Adrienne F. Ertel, Brian J. Fry, Bruce S. Lieberman, Zhenghai Liu, Jesse A. Miller and Brian C. Thomas, 18 August 2020, Proceedings of the National Academy of Sciences.
    DOI: 10.1073/pnas.2013774117

    Also participating in the study were scientists from the University of Kansas; Kings College, UK; the European Organization for Nuclear Research, Switzerland; the National Institute of Chemical Physics and Biophysics, Estonia; the United States Air Force Academy; and Washburn University.

    The Science and Technology Facilities Council and the Estonian Research Council supported this study. Fields also is affliated with the Illinois Center for Advanced Studies of the Universe.

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Astronomy Astrophysics Extinction Event Popular Supernova University of Illinois at Urbana-Champaign
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    Rare Supernova Defies Textbooks and Reveals Inner Layers of a Dying Star

    Star Explodes Twice: Astronomers Capture Stunning Supernova Remains

    Researchers Discovered a Very Rare Type Ibn Supernova

    Scientists Challenge Pulsar ‘Glitch’ Theory

    Study Challenges the Idea That a Supernova Prompted the Formation of the Solar System

    Exploding Star Could Shed New Light on the Nature of Dark Energy

    12 Billion-Year Old Supernova Discovered by Astronomers

    Cloud of Hydrogen and Helium Plunging Toward the Galactic Center

    Astronomers Detect X-rays From the Remains of Supernova SN 1957D

    3 Comments

    1. David W. Ferrin on August 20, 2020 3:24 am

      How many supernova remnants are in the Milky Way?
      Spiral galaxies such as the Milky Way are supposed to generate roughly three supernovae per century. Astronomers thus expect to see as many as 60 supernova explosions that are younger than 2,000 years old, but fewer than 10 have been found. May 15, 2008

      Reply
    2. Dr Anti GMO on August 20, 2020 7:19 am

      Funded by Superpacs of the oil, chemical and GOP counter-intelligent thieves and murderers.

      Now can we hear from some who doesn’t make up ridiculousness and try and pass it off as science? Because this is pure fiction.

      Reply
      • Anson E. Long on October 11, 2020 4:48 am

        “Pure fiction?” Your post resembled your remark!

        Reply
    Leave A Reply Cancel Reply


    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    New mRNA Cancer Vaccine Delivers Stunning Results, Sparks Universal Treatment Hopes

    The Shockingly Simple Vision Breakthrough That Might End LASIK

    Rare Supernova Defies Textbooks and Reveals Inner Layers of a Dying Star

    Why Great White Sharks’ DNA Doesn’t Add Up

    Morning Coffee Found To Boost Happiness, Study Reveals

    Groundbreaking Study Reveals That Vitamin D May Slow Biological Aging

    Scientists Solve 90-Year-Old Mystery in Quantum Physics

    What a 30-Year Study Just Found About Your French Fries and Diabetes

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Astronomers Just Uncovered the Secret Fuel Behind Giant Stars
    • NASA’s Parker Solar Probe Just Solved a 70-Year Solar Mystery
    • NASA’s Webb Telescope Discovers 300 Mysterious Objects That Shouldn’t Exist
    • Surprising Study Finds Meat May Protect Against Cancer Risk
    • What Really Happens When Blood Pressure Drops Below 120
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.