Clean Energy Technology Revolutionized by “Needle in a Haystack” Discovery

Clean Energy Technology Concept

A new family of chemical compounds has been discovered that could revolutionize fuel cell technology and help reduce global carbon emissions.

Researchers from the University of Aberdeen have discovered a new family of chemical compounds that could revolutionize fuel cell technology and help reduce global carbon emissions.

Described as the equivalent of discovering “a needle in a haystack,” the chemical compounds — collectively known as a ‘hexagonal perovskites’ — could be the key to unlocking the potential of ceramic fuel cells.

Ceramic fuel cells are highly efficient devices that convert chemical energy into electrical energy and produce very low emissions if powered by hydrogen, providing a clean alternative to fossil fuels.

Another advantage of ceramic fuel cells is that they can also use hydrocarbon fuels such as methane, meaning they can act as a ‘bridging’ technology which is an important asset in terms of the move away from hydrocarbons towards cleaner energy sources.

They can be used to power cars and homes but the high temperature of operation results in a short life span. Lowering the working temperature is essential for long-term operation, stability, safety, and cost.

Scientists from the University of Aberdeen have been researching the potential for a new compound that might overcome these issues for a number of years, and the discovery of a new chemical compound — which exhibits high conductivity at lower temperatures — marks a major breakthrough.

The results of their research are revealed in a paper — ‘High oxide ion and proton conductivity in a disordered hexagonal perovskite’ which is published today in the journal Nature Materials.

Professor Abbie McLaughlin, Director of Research in the University’s Department of Chemistry, led the study.

She explained: “Ceramic fuel cells are highly efficient, but the problem is they operate at really high temperatures, above 800 °C.  Because of that they have a short lifespan and use expensive components.

“For a number of years we’ve been looking for compounds that might overcome these issues in the relatively unexplored hexagonal perovskite family, but there are specific chemical features required which are hard to find in combination. For example, you need a chemical compound with very little electronic conductivity which is stable in both the hydrogen and oxygen environments of the fuel cell.

“What we have discovered here is a dual proton and oxide ion conductor that will operate successfully at a lower temperature — around 500 °C — which solves these problems.  You could say that we’ve found the needle in a haystack that can unlock the full potential of this technology.”

Reference: “High oxide ion and proton conductivity in a disordered hexagonal perovskite” by Sacha Fop, Kirstie S. McCombie, Eve J. Wildman, Jan M. S. Skakle, John T. S. Irvine, Paul A. Connor, Cristian Savaniu, Clemens Ritter and Abbie C. Mclaughlin, 2 March 2020, Nature Materials.
DOI: 10.1038/s41563-020-0629-4

8 Comments on "Clean Energy Technology Revolutionized by “Needle in a Haystack” Discovery"

  1. How wonderful!! While the Middle East keeps repelling us with a jousting lance, taking all their attention and assets focusing, we, meanwhile, luxuriantly proceed with scientific work in clean modern labs diverting a minimal amount of attention to keeping the deplorables occupied here at home. Isn’t democratic capitalism wonderful!!

  2. This is very useful, especially if the hydrogen would be obtained from off-peak Gen IV nuclear power.

    • why is using nuclear power especially useful? I assume you don’t mind if we bury all the by-products behind your house, right?

      Why don’t they hurry up and clean that mess in Japan or the other on in Russia? Oh, I forgot…they can’t, no one can. You really want more of these endless disasters?

  3. Michael A Bright | March 4, 2020 at 4:37 pm | Reply

    This is actually great news. The more options that are available for clean energy the better. It’s a shame some folks can’t appreciate that.

  4. Mark Rutkowski | March 5, 2020 at 8:37 am | Reply

    I guess katesisco just couldn’t resist making a childish attempt at insults. It is sad we have such petty people in this country. Katesisco, I would tell you where you can shove it but I would be censored.

  5. Battery technology has passed by the always-problematical “hydrogen economy”. This “advance” allows ceramic fuel cells to work at a _reduced_ temperature that is close to 1000 degrees. We still have all of the remaining problems of hydrogen embrittlement and the great expense of keeping and transporting hydrogen as a gas (it liquifies at so low a temperature that this is absurdly energy intensive).

  6. I can’t believe people are still talking about hydrogen…it’s a huge dead end and will ultimately lead to some major disasters if persued. There are many other, better ways to store and transport energy people.

Leave a comment

Email address is optional. If provided, your email will not be published or shared.