Early Disaster Warning: Tsunamis’ Magnetic Fields Are Detectable Before Sea Level Change

Tsunami Illustration

Tsunami Illustration

Magnetic field information could provide earlier disaster warning to at-risk regions, potentially saving lives.

A new study finds the magnetic field generated by a tsunami can be detected a few minutes earlier than changes in sea level and could improve warnings of these giant waves.

As conductive seawater moves across the Earth’s magnetic field, tsunamis produce magnetic fields. Previously, researchers expected that the tsunami’s magnetic field would arrive before a rise in sea level, but they lacked the requisite simultaneous magnetic and sea level data to confirm the phenomena.

The new study provides real-world evidence for using tsunamis’ magnetic fields to predict the height of tsunami waves using data from two real events — a 2009 tsunami in Samoa and a 2010 tsunami in Chile — that have both sets of necessary data. The new study was published in AGU’s Journal of Geophysical Research: Solid Earth, which focuses on the physics and chemistry of the solid Earth.

The study confirms the magnetic field generated by a tsunami arrives ahead of sea-level change and that its magnitude can be used to estimate the tsunami’s wave height. How much earlier the magnetic field arrives depends on water depth, but in their results, the study authors found the early arrival time to be about one minute prior to sea level change over a 4,800-meter deep sea.

This information could provide earlier disaster warning if incorporated into tsunami risk models, potentially saving lives.

Chile Tsunami Aftermath

The aftermath of a 2010 tsunami in Chile, which was analyzed in a new study in JGR Solid Earth. Earlier warnings made possible by the study of tsunami-generated magnetic fields could better prepare coastal areas for impending disasters. Credit: International Federation of Red Cross and Red Crescent Societies

“It is very exciting because in previous studies we didn’t have the observation [of] sea level change,” said Zhiheng Lin, senior study author and a geophysicist at Kyoto University. “We have observations [of] sea level change, and we find that the observation agrees with our magnetic data as well as theoretical simulation.”

During the two tsunamis, the study team looked at simultaneous measurements of sea level change using seafloor pressure data and magnetic fields. They discovered that the initial arrival of the magnetic field, which is identical to the start of a seismic wave, may be exploited for early tsunami warning. The tsunami-generated magnetic field is so sensitive that even a few centimeters of wave height may be observed.

“They did something that basically needed to be done,” said Neesha Schnepf, a researcher of geomagnetics at the University of Colorado, Boulder who was not involved in the study. “We’ve needed a study that compared the magnetic field data with the sea level change from the pressure data, and I’m pretty sure they’re the first to really compare how well the sea level from magnetic field matches the sea level from pressure, so that’s definitely very useful.”

When the researchers compared the horizontal and vertical components of the tsunami magnetic field with sea level change, they found that both components can precisely predict tsunami sea level change, if models include good estimates for ocean depth and the electrical structure below the seafloor.

This relationship between magnetic fields and wave height can be used to improve tsunami source models, which estimate the initial sea surface topography of a tsunami and then predict water wave arrival time and wave height — important data for informing disaster readiness and response.

The difficulty of maintaining already limited observational stations means these types of data from tsunamis are often not available. Furthermore, these findings only apply in deep-sea and not coastal environments, where deep water in the region filters out environmental noise to allow the tsunami signal to be detected.

However, providing warning for these severe events — which have the potential to cause intense damage to large areas — makes the predictions worthwhile, said Lin.

“I think the practical goal would be if your ability to model tsunamis is so improved, … you could come up with much better predictions of what areas might need to be warned [and] how badly it might hit certain places,” Schnepf said.

Reference: “Direct Comparison of the Tsunami-Generated Magnetic Field With Sea Level Change for the 2009 Samoa and 2010 Chile Tsunamis” by Zhiheng Lin, Hiroaki Toh and Takuto Minami, 18 October 2021, Journal of Geophysical Research Solid Earth.
DOI: 10.1029/2021JB022760

Be the first to comment on "Early Disaster Warning: Tsunamis’ Magnetic Fields Are Detectable Before Sea Level Change"

Leave a comment

Email address is optional. If provided, your email will not be published or shared.