GRAIL Spacecraft Officially Begins Collecting Lunar Data

GRAIL Artist's Rendition

Using a precision formation-flying technique, the twin GRAIL spacecraft maps the moon’s gravity field, as depicted in this artist’s rendering. Radio signals traveling between the two spacecraft provide scientists the exact measurements required as well as flow of information not interrupted when the spacecraft are at the lunar farside, not seen from Earth. The result should be the most accurate gravity map of the moon ever made. Credit: NASA/JPL-Caltech

The GRAIL spacecraft has officially begun its science phase and will map the gravity field of the moon three times over the next 84 days, allowing scientists to better understand how Earth and other rocky planets in the solar system formed and evolved.

NASA’s Gravity Recovery And Interior Laboratory (GRAIL) spacecraft orbiting the moon officially have begun their science collection phase. During the next 84 days, scientists will obtain a high-resolution map of the lunar gravitational field to learn about the moon’s internal structure and composition in unprecedented detail. The data also will provide a better understanding of how Earth and other rocky planets in the solar system formed and evolved.

“The initiation of science data collection is a time when the team lets out a collective sigh of relief because we are finally doing what we came to do,” said Maria Zuber, principal investigator for the GRAIL mission at the Massachusetts Institute of Technology in Cambridge, “but it is also a time where we have to put the coffee pot on, roll up our sleeves and get to work.”

The GRAIL mission’s twin, washing-machine-sized spacecraft, named Ebb and Flow, entered lunar orbit on New Year’s Eve and New Year’s Day. GRAIL’s science phase began yesterday at 5:15 p.m. PST (8:15 p.m. EST). During this mission phase, the spacecraft will transmit radio signals precisely defining the rate of change of distance between the two. The distance between the spacecraft will change slightly as they fly over areas of greater and lesser gravity caused by visible features such as mountains, craters, and masses hidden beneath the lunar surface. Science activities are expected to conclude on May 29, after GRAIL maps the gravity field of the moon three times.

“We are in a near-polar, near-circular orbit with an average altitude of about 34 miles (55 kilometers) right now,” said David Lehman, GRAIL project manager from NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. “During the science phase, our spacecraft will orbit the moon as high as 31 miles (51 kilometers) and as low as 10 miles (16 kilometers). They will get as close to each other as 40 miles (65 kilometers) and as far apart as 140 miles (225 kilometers).”

The two spacecraft were previously named GRAIL A and B. The names Ebb and Flow were the result of a nationwide student contest to choose new names for them. The winning entry was submitted by fourth graders from the Emily Dickinson Elementary School in Bozeman, Mont. Nearly 900 classrooms with more than 11,000 students from 45 states, Puerto Rico and the District of Columbia, participated in the contest.

JPL manages the GRAIL mission for NASA’s Science Mission Directorate in Washington. The GRAIL mission is part of the Discovery Program managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space Systems in Denver built the spacecraft.

Be the first to comment on "GRAIL Spacecraft Officially Begins Collecting Lunar Data"

Leave a comment

Email address is optional. If provided, your email will not be published or shared.