Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Technology»HeartBEiT: Mount Sinai’s AI Innovation Decoding Electrocardiograms As Language
    Technology

    HeartBEiT: Mount Sinai’s AI Innovation Decoding Electrocardiograms As Language

    By The Mount Sinai Hospital / Mount Sinai School of MedicineJune 6, 2023No Comments5 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    Diagnosing Heart Attacks With New AI Model
    HeartBEiT is much more precise at highlighting areas of interest, in this case for diagnosing heart attacks (myocardial infarction). Credit: Augmented Intelligence in Medicine and Science Laboratory at the Icahn School of Medicine at Mount Sinai

    Mount Sinai’s AI model, HeartBEiT, improves the accuracy and detail of ECG diagnoses, even for rare conditions with limited data. It interprets ECGs as language and outperforms traditional CNNs, highlighting specific ECG areas responsible for heart conditions.

    Mount Sinai researchers have developed an innovative artificial intelligence (AI) model for electrocardiogram (ECG) analysis that allows for the interpretation of ECGs as language. This approach can enhance the accuracy and effectiveness of ECG-related diagnoses, especially for cardiac conditions where limited data is available on which to train.

    In a study published in the June 6 online issue of npj Digital Medicine, the team reported that its new deep learning model, known as HeartBEiT, forms a foundation upon which specialized diagnostic models can be created. The team noted that in comparison tests, models created using HeartBEiT surpassed established methods for ECG analysis.

    “Our model consistently outperformed convolutional neural networks [CNNs], which are commonly used machine learning algorithms for computer vision tasks. Such CNNs are often pretrained on publicly available images of real-world objects,” says first author Akhil Vaid, MD, Instructor of Data-Driven and Digital Medicine (D3M) at the Icahn School of Medicine at Mount Sinai. “Because HeartBEiT is specialized to ECGs, it can perform as well as, if not better than, these methods using a tenth of the data. This makes ECG-based diagnosis considerably more viable, especially for rare conditions which affect fewer patients and therefore have limited data available.”

    Thanks to their low cost, non-invasiveness, and wide applicability to cardiac disease, more than 100 million electrocardiograms are performed each year in the United States alone. Nonetheless, the ECG’s usefulness is limited in scope since physicians cannot consistently identify, with the naked eye, patterns representative of disease, particularly for conditions which do not have established diagnostic criteria or where such patterns may be too subtle or chaotic for human interpretation. Artificial intelligence is now revolutionizing the science, however, with most of the work to date centered on CNNs.

    Mount Sinai is taking the field in a bold new direction by building on the intense interest in so-called generative AI systems such as ChatGPT, which are built on transformers—deep learning models that are trained on massive datasets of text to generate human-like responses to prompts from users on almost any topic. Researchers are using a related image-generating model to create discrete representations of small parts of the ECG, enabling analysis of the ECG as language.

    “These representations may be considered individual words, and the whole ECG a single document,” explains Dr. Vaid. “HeartBEiT understands the relationships between these representations and uses this understanding to perform downstream diagnostic tasks more effectively. The three tasks we tested the model on were learning if a patient is having a heart attack, if they have a genetic disorder called hypertrophic cardiomyopathy, and how effectively their heart is functioning. In each case, our model performed better than all other tested baselines.”

    Enhancing Clinical Understanding and Diagnostic Accuracy

    Researchers pretrained HeartBEiT on 8.5 million ECGs from 2.1 million patients collected over four decades from four hospitals within the Mount Sinai Health System. Then they tested its performance against standard CNN architectures in the three cardiac diagnostic areas. The study found that HeartBEiT had significantly higher performance at lower sample sizes, along with better “explainability.” Elaborates senior author Girish Nadkarni, MD, MPH, Irene and Dr. Arthur M. Fishberg Professor of Medicine at Icahn Mount Sinai, Director of The Charles Bronfman Institute of Personalized Medicine, and System Chief, Division of Data-Driven and Digital Medicine, Department of Medicine: “Neural networks are considered black boxes, but our model was much more specific in highlighting the region of the ECG responsible for a diagnosis, such as a heart attack, which helps clinicians to better understand the underlying pathology. By comparison, the CNN explanations were vague even when they correctly identified a diagnosis.”

    Indeed, through its sophisticated new modeling architecture, the Mount Sinai team has greatly enhanced the manner and opportunities by which physicians can interact with the ECG. “We want to be clear that artificial intelligence is by no means replacing diagnosis by professionals from ECGs,” explained Dr. Nadkarni, “but rather augmenting the ability of that medium in an exciting and compelling new way to detect heart problems and monitor the heart’s health.”

    The paper is titled “A foundational vision transformer improves diagnostic performance for electrocardiograms.”

    Reference: “A foundational vision transformer improves diagnostic performance for electrocardiograms” by Akhil Vaid, Joy Jiang, Ashwin Sawant, Stamatios Lerakis, Edgar Argulian, Yuri Ahuja, Joshua Lampert, Alexander Charney, Hayit Greenspan, Jagat Narula, Benjamin Glicksberg and Girish N Nadkarni, 6 June 2023, npj Digital Medicine.
    DOI: 10.1038/s41746-023-00840-9

    This study was funded by the National Heart, Lung, and Blood Institute of the NIH, grant number R01HL155915, and by the National Center for Advancing Translational Sciences of the NIH, grant number UL1TR004419.

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Artificial Intelligence Cardiology Heart Machine Learning Mount Sinai Hospital Mount Sinai School of Medicine
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    AI Revolutionizes Sleep Diagnosis, Achieving 92% Accuracy at Mount Sinai

    AI Takes the Pulse: Revolutionizing Heart Disease Detection in Dogs

    Aspirin Withdrawal Unlocks Safer Recovery for Heart Patients

    Wearable Wonders: How Your Apple Watch Could Gauge Your Mental Resilience

    COVID-19 Vaccination Linked to Fewer Heart Attacks, Strokes, and Other Cardiovascular Issues

    AI Accurately Predicts Risk of Death in Patients With Suspected or Known Heart Disease

    AI Uses Timing and Weather Data to Accurately Predict Cardiac Arrest Risk

    Machine-Learning System Uses Physics to Identify Habitable Planets

    New System Converts MRI Scans into 3D-Printed Heart Models for Surgical Planning

    Leave A Reply Cancel Reply

    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Medical Cannabis Fails the Long-Term Test: 58% of Patients Quit Within a Year

    Popular Artificial Sweetener Could Sabotage Cancer Treatment, Study Warns

    The Unexpected Reason Baboons March in Order

    DNA From a Mysterious Extinct Hominin May Have Helped Ancient Americans Survive

    New Measurements Show We May Live in a Giant “Cosmic Void”

    High-Potency Cannabis Linked to Schizophrenia, Psychosis, and More, Review Finds

    Physicists Discover Universal Laws Governing Quantum Entanglement

    Restricted Blood Flow Supercharges Cancer Growth, Study Finds

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • Stanford Scientists Successfully Reverse Autism Symptoms in Mice
    • Why Kids With More Colds Are Less Likely to Get COVID
    • Doctors Just Found Out What Metformin Really Does Inside You
    • For the First Time, Astronomers See a Baby Planet Still Glowing From Birth
    • This Weirdly Brilliant Telescope Design Might Finally Uncover Earth’s Twin
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.