How Did Life on Earth Originate? New Technology Provides Novel Insights

Photoionization Induced Proton Transfer Between Two Urea Molecules in an Aqueous Urea Solution

Researchers used innovative X-ray spectroscopy to understand how ionized urea molecules might have contributed to the origins of life on Earth, paving the way for advancements in attochemistry. Above is a representation of photoionization-induced proton transfer between two urea molecules in an aqueous urea solution. Credit: Ludger Inhester

A new technology has provided novel insights into the long-standing mystery: how did life on Earth originate?

Before life emerged on our planet, during what researchers refer to as the pre-biotic stage, the atmosphere was less dense. This meant that high-energy radiation from space was omnipresent and ionized molecules. Some hypothesize that small water puddles containing urea – an organic compound essential for forming nucleo bases – became exposed to this intense radiation, causing the urea to undergo conversion into reaction products. These would serve as the building blocks of life: DNA and RNA.

But to learn more about this process, scientists needed to dive further into the mechanism behind the urea’s ionization and reaction, as well as the reaction pathways and energy dissipation.

An international collaborative group comprising corresponding author Zhong Yin, currently based as an associate professor at Tohoku University’s International Center for Synchrotron Radiation Innovation Smart (SRIS), along with colleagues from the University of Geneva (UNIGE) and ETH Zurich (ETHZ), and the University of Hamburg, have been able to reveal more thanks to an innovative X-ray spectroscopy approach.

The technology, which harnessed a high-harmonic generation light source and a sub-micron liquid flat-jet, enabled researchers to examine chemical reactions occurring in liquids with unparalleled temporal precision. Crucially, the groundbreaking approach allowed the researchers to investigate the intricate changes in urea molecules at the femtosecond level, which is a quadrillionth part of a second.

“We have shown for the first time how urea molecules react after ionization,” says Yin. “Ionisation radiation damages the urea biomolecules. But in dissipating the energy from the radiation, the ureas undergo a dynamical process which occurs at the femtosecond time scale.”

Previous studies that examined molecule reactions were limited to the gas phase. In order to expand this to the aqueous environment, which is the natural environment of bio-chemical processes, the group had to engineer a device that could generate an ultra-thin liquid jet, with a thickness smaller than one millionth of a meter, within a vacuum. A thicker jet would have impeded measurements by absorbing a portion of the X-rays employed.

Yin, who acted as lead experimentalist, believes their breakthrough does more than answer how life on Earth formed. It also opens a new pathway in the novel scientific field of attochemistry. “Shorter light pulses are necessary to understand chemical reactions in real-time and push the boundaries in attochemistry. Our approach enables scientists to observe a molecular movie, following each step of the process along the way.”

Reference: “Femtosecond proton transfer in urea solutions probed by X-ray spectroscopy” by Zhong Yin, Yi-Ping Chang, Tadas Balčiūnas, Yashoj Shakya, Aleksa Djorović, Geoffrey Gaulier, Giuseppe Fazio, Robin Santra, Ludger Inhester, Jean-Pierre Wolf and Hans Jakob Wörner, 28 June 2023, Nature.
DOI: 10.1038/s41586-023-06182-6

2 Comments on "How Did Life on Earth Originate? New Technology Provides Novel Insights"

  1. Life is chemical reactions controlled by electronic processors. If there are electrical impulses (cardiogram, encephalogram), there is an electronic circuit that produces them.
    Eyes – television cameras, ears – microphones. ..
    Look for transistors in organic chemistry molecules.

  2. If we are to believe that the Earth is only 5 billion years old, how is it the first Metazoans are found in Meteorites that are 4.5 billion years old (as in the Allan Hills Meteorite and Gibeon Iron meteorite). Where did they, the metazoans, originate?

Leave a comment

Email address is optional. If provided, your email will not be published or shared.