Incredible New Radio Wave Images Show What’s Inside Jupiter’s Storms [Video]

Artists’ animation showing Jupiter in radio waves with ALMA and in visible light with the Hubble Space Telescope (HST).

Credit: ALMA (ESO/NAOJ/NRAO), I. de Pater et al.; NRAO/AUI NSF, S. Dagnello; NASA/Hubble

Swirling clouds, big colorful belts, giant storms. The beautiful and incredibly turbulent atmosphere of Jupiter has been showcased many times. But what is going on below the clouds? What is causing the many storms and eruptions that we see on the ‘surface’ of the planet? However, to study this, visible light is not enough. We need to study Jupiter using radio waves.

New radio wave images made with the Atacama Large Millimeter/submillimeter Array (ALMA), the most complex astronomical observatory ever built on Earth, provide a unique view of Jupiter’s atmosphere down to fifty kilometers below the planet’s visible (ammonia) cloud deck.

Spherical ALMA Map of Jupiter

Spherical ALMA map of Jupiter showing the distribution of ammonia gas below Jupiter’s cloud deck. Credit: ALMA (ESO/NAOJ/NRAO), I. de Pater et al.; NRAO/AUI NSF, S. Dagnello

“ALMA enabled us to make a three-dimensional map of the distribution of ammonia gas below the clouds. And for the first time, we were able to study the atmosphere below the ammonia cloud layers after an energetic eruption on Jupiter,” said Imke de Pater of the University of California, Berkeley (EE. UU.).

The atmosphere of giant Jupiter is made out of mostly hydrogen and helium, together with trace gases of methane, ammonia, hydrosulfide, and water. The top-most cloud layer is made up of ammonia ice. Below that is a layer of solid ammonia hydrosulfide particles, and deeper still, around 80 kilometers below the upper cloud deck, there likely is a layer of liquid water. The upper clouds form the distinctive brown belts and white zones seen from Earth.

Many of the storms on Jupiter take place inside those belts. They can be compared to thunderstorms on Earth and are often associated with lightning events. Storms reveal themselves in visible light as small bright clouds, referred to as plumes. These plume eruptions can cause a major disruption of the belt, which can be visible for months or years.

Flat Map of Jupiter in Radio Waves

Flat map of Jupiter in radio waves with ALMA (top) and visible light with the Hubble Space Telescope (bottom). The eruption in the South Equatorial Belt is visible in both images. Credit: ALMA (ESO/NAOJ/NRAO), I. de Pater et al.; NRAO/AUI NSF, S. Dagnello; NASA/Hubble

The ALMA images were taken a few days after amateur astronomers observed an eruption in Jupiter’s South Equatorial Belt in January 2017. A small bright white plume was visible first, and then a large-scale disruption in the belt was observed that lasted for weeks after the eruption.

De Pater and her colleagues used ALMA to study the atmosphere below the plume and the disrupted belt at radio wavelengths and compared these to UV-visible light and infrared images made with other telescopes at approximately the same time.

“Our ALMA observations are the first to show that high concentrations of ammonia gas are brought up during an energetic eruption,” said de Pater. “The combination of observations simultaneously at many different wavelengths enabled us to examine the eruption in detail. Wich led us to confirm the current theory that energetic plumes are triggered by moist convection at the base of water clouds, which are located deep in the atmosphere. The plumes bring up ammonia gas from deep in the atmosphere to high altitudes, well above the main ammonia cloud deck,” she added.

“These ALMA maps at millimeter wavelengths complement the maps made with the National Science Foundation’s Very Large Array in centimeter wavelengths,” said Bryan Butler of the National Radio Astronomy Observatory. “Both maps probe below the cloud layers seen at optical wavelengths and show ammonia-rich gases rising into and forming the upper cloud layers (zones), and ammonia-poor air sinking down (belts).”

Radio Image of Jupiter Made with ALMA.

Radio image of Jupiter made with ALMA. Bright bands indicate high temperatures and dark bands low temperatures. The dark bands correspond to the zones on Jupiter, which are often white at visible wavelengths. The bright bands correspond to the brown belts on the planet. This image contains over 10 hours of data, so fine details are smeared by the planet’s rotation. Credit: ALMA (ESO/NAOJ/NRAO), I. de Pater et al.; NRAO/AUI NSF, S. Dagnello

“The present results show superbly what can be achieved in planetary science when an object is studied with various observatories and at various wavelengths”. Explains Eric Villard, an ALMA astronomer part of the research team. “ALMA, with its unprecedented sensitivity and spectral resolution at radio wavelengths, worked together successfully with other major observatories around the world, to provide the data to allow a better understanding of the atmosphere of Jupiter.”

Additional Information

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Southern Observatory (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the Ministry of Science and Technology (MOST) in Taiwan and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

1 Comment on "Incredible New Radio Wave Images Show What’s Inside Jupiter’s Storms [Video]"

  1. Christine Redding | August 27, 2019 at 2:45 pm | Reply

    My Dad would be so fascinated with this! He, Kenneth Franklin, and his colleague, Bernard Burke, were the radio astronomers in the late 1950s who first identified Jupiter as a radio source. Since then–I was 5 at the time, I’ve always felt that Jupiter was kind of a member of our family.

Leave a comment

Email address is optional. If provided, your email will not be published or shared.