Japanese Scientists Develop Novel, Completely Solid, Rechargeable Air Battery

New Battery Technology Concept

Japanese researchers have developed an all-solid-state rechargeable air battery (SSAB) using redox-active organic molecules for the negative electrode and a proton-conductive polymer as the solid electrolyte, showcasing improved performance and durability. This innovative approach has potential implications for enhancing battery life in electronics and advancing toward a carbon-free society.

In this first-of-its-kind battery, a benzoquinone-based negative electrode is used alongside a solid Nafion polymer electrolyte.

Metals traditionally serve as the active materials for the negative electrodes in batteries. However, there’s been a shift towards using redox-active organic molecules like quinone- and amine-based compounds as negative electrodes in rechargeable metal–air batteries, which feature oxygen-reducing positive electrodes.

Here, protons and hydroxide ions participate in the redox reactions. Such batteries exhibit high performance, close to the maximum capacity that is theoretically possible. Furthermore, using redox-active organic molecules in rechargeable air batteries overcomes problems associated with metals, including the formation of structures called ‘dendrites,’ which impact battery performance, and have negative environmental impact.

A Schematic Representation of the Simplified Cell Configuration and Cell Reactions of the Dihydroxy Benzoquinone Based Solid State Air Battery

Researchers have developed an all-solid-state rechargeable air battery with a dihydroxy-benzoquinone-based organic negative electrode and Nafion polymer electrolyte. Credit: Kenji Miyatake from Waseda University

However, these batteries use liquid electrolytes—just like metal-based batteries—which pose major safety concerns like high electrical resistance, leaching effects, and flammability.

Now, in a new study recently published in Angewandte Chemie International Edition, a group of Japanese researchers have developed an all-solid-state rechargeable air battery (SSAB) and investigated its capacity and durability. The study was led by Professor Kenji Miyatake from Waseda University and the University of Yamanashi, and co-authored by Professor Kenichi Oyaizu from Waseda University.

The researchers chose a chemical called 2,5-dihydroxy-1,4-benzoquinone (DHBQ) and its polymer poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene) (PDBM) as active materials for the negative electrode due to their stable and reversible redox reactions in acidic conditions. In addition, they utilized a proton-conductive polymer called Nafion as the solid electrolyte, thereby replacing conventional liquid electrolytes. “To the best of my knowledge, no air batteries based on organic electrodes and solid polymer electrolytes have been developed yet,” says Miyatake.

After the SSAB was in place, the researchers experimentally assessed its charge–discharge performance, rate characteristics, and cyclability. They found that, unlike typical air batteries that use a metallic negative electrode and an organic liquid electrolyte, the SSAB did not deteriorate in the presence of water and oxygen. Furthermore, replacing the redox-active molecule DHBQ with its polymeric counterpart PDBM formed a better negative electrode. While the per gram-discharge capacity of the SSAB-DHBQ was 29.7 mAh, the corresponding value of the SSAB-PDBM was 176.1 mAh, at a constant current density of 1 mAcm-2.

All Solid State Rechargeable Air Battery With Redox Active Organic Negative Electrode

The battery, which uses a polymeric dihydroxy-benzoquinone-based negative electrode and a Nafion-based solid electrolyte, exhibits high Coulombic efficiency and discharge capacity. Credit: Kenji Miyatake from Waseda University

The researchers also found that the coulombic efficiency of SSAB-PDBM was 84% at a 4 C rate, which gradually decreased to 66% at a 101 C rate. While the discharge capacity of SSAB-PDBM was reduced to 44% after 30 cycles, by increasing the proton-conductive polymer content of the negative electrode, the researchers could significantly improve it to 78%. Electron microscopic images confirmed that the addition of Nafion improved the performance and durability of the PDBM-based electrode.

This study demonstrates the successful operation of an SSAB comprising redox-active organic molecules as the negative electrode, a proton-conductive polymer as the solid electrolyte, and an oxygen-reducing, diffusion-type positive electrode. The researchers hope that it will pave the way for further advancements. “This technology can extend the battery life of small electronic gadgets such as smartphones and eventually contribute to realizing a carbon-free society,” concludes Miyatake.

Reference: “All-Solid-State Rechargeable Air Batteries Using Dihydroxybenzoquinone and Its Polymer as the Negative Electrode” by Makoto Yonenaga, Yusuke Kaiwa, Kouki Oka, Kenichi Oyaizu and Kenji Miyatake, 2 May 2023, Angewandte Chemie International Edition.
DOI: 10.1002/anie.202304366

The study was funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and JKA promotion funds from AUTORACE.

3 Comments on "Japanese Scientists Develop Novel, Completely Solid, Rechargeable Air Battery"

  1. ‘A carbon free society’
    Sure, let’s get rid of all the carbon based units. 🙄

  2. I think the writer is referring to a carbon neutral society.

  3. SciTechDaily? More like HypeTechDaily.

    I’ve never seen any of the tech written about on this site ever maturing to actual commercial application.

    Who knows if any of that is even real…

Leave a comment

Email address is optional. If provided, your email will not be published or shared.