Researchers Join Forces to Investigate the Airborne Transmission of Coronavirus Using a Supercomputer

Coronavirus Airborne Transmission Simulation

The first situation to simulate is of someone coughing indoors. Photo: Petteri Peltonen / Aalto University

The researchers are using a supercomputer to carry out 3D modeling and believe that the first results will be obtained in the next few weeks.

The project includes fluid dynamics physicists, virologists, and biomedical engineering specialists. The researchers are using a supercomputer to carry out 3D modeling and believe that the first results will be obtained in the next few weeks.

Aalto University, the Finnish Meteorological Institute, VTT Technical Research Centre of Finland and the University of Helsinki have brought together a multidisciplinary group of researchers to model how the extremely small droplets that leave the respiratory tract when coughing, sneezing or talking are transported in air currents. These droplets can carry pathogens such as coronaviruses. The researchers will also use existing information to determine whether the coronavirus could survive in the air.

Dozens of researchers are involved, ranging from fluid dynamics physicists to specialists in virology, medical technology, and infectious diseases. The project was launched based on a proposal put forward by Janne Kuusela, Chief Physician at the Essote Emergency Clinic run by the South Savo Joint Authority for Social and Health Services.

For the modeling work, the researchers are using a supercomputer that CSC – Finnish IT Center for Science Ltd has made available at very short notice.

“Under normal conditions, researchers may have to queue for many days to start their simulations on CSC machines. There is no time for that now, so instead, we are permitted exceptionally to start straight away,” says Aalto University Assistant Professor Ville Vuorinen, who is leading the cooperative project.

The project will model the coughing of a person moving around indoors

The division of work for the project is clear. Aalto University, VTT Technical Research Centre of Finland and the Finnish Meteorological Institute will carry out the 3D airflow modeling together with the droplet motion. The task of the virology and infectious diseases specialists is to analyze the implications of the models for coronavirus infections. The research group is working closely with the physicians at Essote and infectious diseases specialists from the Finnish Institute for Health and Welfare.

The first situation to be simulated is that of a person coughing in an indoor environment. The boundary conditions, such as the air velocity, are specified in order to ensure that the different models produced are comparable and that it is possible, for example, to assess the necessary safety distances between people.

“One aim is to find out how quickly the virus concentrations dilute in the air in various airflow situations that could arise in places such as a grocery store,” says Vuorinen.

“Visualising the invisible movements of viral particles is very important in order to better understand the spreading of infectious diseases and the different phenomena related to this, both now and in the future,” he adds.

Researchers believe that the high computing capacity and close, multidisciplinary cooperation will mean that the first results will be obtained already in the next few weeks.

CSC – Finnish IT Center for Science Ltd is prioritizing the provision of computing capacity and expert assistance for research aimed at combating the COVID-19 pandemic. If you are working directly on a pandemic research project, please contact [email protected].

“I fully encourage other researchers to do research on the coronavirus epidemic as it is really time to roll up the sleeves. Within the space of just a few hours, we have put a team together and started research immediately,” says Vuorinen

1 Comment on "Researchers Join Forces to Investigate the Airborne Transmission of Coronavirus Using a Supercomputer"

  1. This is my comment at WHO youtube channel but not showing to the general public, maybe waiting for review.
    My warning for over the air virus transmission. Comments are as follows
    WHO watch carefully these videos 🡿🡿🡿🡿🡿🡿🡿🡿🡿
    what I want to demonstrate here is a bigger form of vortex that can carry heavy dust particles
    a smaller form of vortex every day we encounter can carry respiratory droplets to long distances in concentrated form.

    we encounter vortex every day when we move through air or air blowing through city streets hitting buildings
    the circular motion of air (vortex) can carry heavy particles to long distances in concentrated form
    I know the high temperature, UV rays sunlight, gases from air pollution may destroy covid-19
    The sun is not always shining due to weather or tall buildings
    you don’t need expensive labs or supercomputer to know how respiratory droplets can travel so far and land sticking to your whole body and entering your lungs.
    also landing and sticking to your compound/home.
    WHO and governments around the world promoting to wash hands(good advice) and missing to promote to wear a mask for noninfected persons.
    some health care workers even saying covid-19 cannot spread by air on public tv broadcasts and only promoting to clean hands.

    if wearing the mask can only prevent 50 percent that 50 percent will add up to our luck. It is better than nothing.
    The best ways to prevent, don’t go outside. clean your whole body. wear mask when you have to go outside.
    Cleaning hands alone can’t prevent the virus 100%. We should promote wearing masks for noninfected persons
    there are cases of the virus continue to spread despite lock-down and washing hands.
    we are missing virus transmission-through-air.

    we have to preserve masks for health care workers. That doesn’t mean we have to tone down air transmission
    I suggest DIY masks using multi-layer fabrics soaking with some kind of moisturizer that can destroy covid-19 and don’t affect skin health.
    I think wet filters are better than dry filters when capturing particles.

    I am not English native pls forgive me what I said is offensive to someone.

    Good Luck Everyone.
    From Myanmar (Burma)

Leave a comment

Email address is optional. If provided, your email will not be published or shared.