Smarter Opioids: A New Approach to Pain Relief Without Addiction

Nerve Cells Damage Artist's Concept

A potential new approach to developing painkillers that don’t cause addiction or hallucinations has been identified. Currently, pain-relieving drugs like morphine and oxycodone target the mu opioid receptor, which can lead to addiction, while alternative drugs targeting the kappa opioid receptor can cause hallucinations. Researchers found that certain binding sites on the kappa receptor don’t lead to hallucinations, and by understanding how the seven G proteins linked to the receptor interact, they believe it may be possible to develop drugs that only activate pain-relief pathways without triggering hallucinations or addiction.

Targeting opioid receptor pathway could treat pain without addiction or hallucinations.

Researchers have discovered a new approach to developing painkillers that don’t cause addiction or hallucinations by targeting specific binding sites on the kappa opioid receptor and understanding the interaction of G proteins linked to the receptor. This could lead to safer pain-relieving drugs.

Strategies to treat pain without triggering dangerous side effects such as euphoria and addiction have proven elusive. For decades, scientists have attempted to develop drugs that selectively activate one type of opioid receptor to treat pain while not activating another type of opioid receptor linked to addiction. Unfortunately, those compounds can cause a different unwanted effect: hallucinations. But a new study led by Washington University School of Medicine in St. Louis has identified a potential route to pain relief that neither triggers addiction nor activates the pathway that causes hallucinations.

The research was published on May 3 in the journal Nature.

Painkilling drugs such as morphine and oxycodone, as well as illegal street drugs such as heroin and fentanyl, activate what are known as mu opioid receptors on nerve cells. Those receptors relieve pain but also cause euphoria — the feeling of being high — and that feeling contributes to addiction. An alternative strategy is to target another opioid receptor, called the kappa opioid receptor. Scientists attempting to make drugs that target only the kappa receptor have found that they also effectively relieve pain, but they can be associated with other side effects such as hallucinations.

Researchers at the Center for Clinical Pharmacology at Washington University School of Medicine and the University of Health Sciences & Pharmacy, also in St. Louis, have identified the potential mechanisms behind such hallucinations, with the goal of developing painkillers without this side effect. Using electron microscopes, they identified the way that a natural compound related to the salvia plant selectively binds only to the kappa receptor but then causes hallucinations.

“Since 2002, scientists have been trying to learn how this small molecule causes hallucinations through kappa receptors,” said principal investigator Tao Che, PhD, an assistant professor of anesthesiology. “We determined how it binds to the receptor and activates potential hallucinogenic pathways, but we also found that other binding sites on the kappa receptor don’t lead to hallucinations.”

Potential Pathway to Pain Relief

Scientists at the Center for Clinical Pharmacology at Washington University School of Medicine and the University of Health Sciences & Pharmacy have identified a potential pathway to pain relief that neither triggers addiction nor causes hallucinations. Strategies to treat pain without triggering dangerous side effects such as euphoria and addiction have proven elusive. Credit: Che Lab Washington University

Developing new drugs to target these other kappa receptor binding sites may relieve pain without either the addictive problems associated with older opioids or the hallucinations associated with the existing drugs that selectively target the kappa opioid receptor.

Targeting the kappa receptor to block pain without hallucinations would be an important step forward, according to Che, because opioid drugs that interact with the mu-opioid receptor have led to the current opioid epidemic, causing more than 100,000 overdose deaths in the U.S. in 2021.

“Opioids, especially synthetic opioids such as fentanyl, have contributed to far too many overdose deaths,” Che said. “There’s no doubt we need safer pain-relieving drugs.”

Che’s team, led by first author Jianming Han, PhD, a postdoctoral research associate in Che’s laboratory, found that a class of signaling proteins called G proteins cause the kappa opioid receptor to activate several different pathways.

“There are seven G proteins linked to the kappa receptor, and although they are very similar to each other, the differences between the proteins may help explain why some compounds can cause side effects such as hallucinations,” Han said. “By learning how each of the proteins binds to the kappa receptor, we expect to find ways to activate that receptor without causing hallucinations.”

The function of the G proteins has largely been unclear until now, particularly the protein that activates the pathway linked to hallucinations.

“All of these proteins are similar to one another, but the specific protein subtypes that bind to the kappa receptor determine which pathways will be activated,” Che said. “We have found that the hallucinogenic drugs can preferentially activate one specific G protein but not other, related G proteins, suggesting that beneficial effects such as pain relief can be separated from side effects such as hallucinations. So we expect it will be possible to find therapeutics that activate the kappa receptor to kill pain without also activating the specific pathway that causes hallucinations.”

Reference: “Ligand and G-protein selectivity in the κ-opioid receptor” by Jianming Han, Jingying Zhang, Antonina L. Nazarova, Sarah M. Bernhard, Brian E. Krumm, Lei Zhao, Jordy Homing Lam, Vipin A. Rangari, Susruta Majumdar, David E. Nichols, Vsevolod Katritch, Peng Yuan, Jonathan F. Fay and Tao Che, 3 May 2023, Nature.
DOI: 10.1038/s41586-023-06030-7

The study was funded with support from the National Institute of General Medical Sciences and the National Institute of Neurological Disorders and Stroke of the National Institutes of Health (NIH). Grant numbers: R35 GM143061 and R01 NS099341.

4 Comments on "Smarter Opioids: A New Approach to Pain Relief Without Addiction"

  1. Richard Kelly | May 4, 2023 at 5:28 pm | Reply

    You also need to design a drug that doesn’t cause respiratory depression (which is what kills in overdoses) and doesn’t drive tolerance. If you can eliminate these AND the euphoric effects of opiates, while retaining the pain relieving properties, THEN you have something.

  2. Che mentions with so many opioid deaths from Fentanyl, we obviously need safer pain killer drugs.
    IMO I don’t think those users are looking for pain relief at that point. Maybe over time folks will get these newer drugs when they have an injury, and not develop opioid cravings…hopefully.

  3. Daughter of a Severe Chronic Pain Patient | May 6, 2023 at 3:04 pm | Reply

    The article should’ve noted that it’s well established (but apparently not well-known) that opioids only trigger the euphoric effect when used in people who aren’t in substantial pain. People using the drugs properly don’t usually experience that particular side-effect.

    The vast majority of opioid deaths occur as a result of people using illegally-obtained drugs, either for recreational purposes or as a way to deal with mental health issues. Even if the prescription version is made non-addictive (doubtless at ten times the price and half the effectiveness) and the current version vanishes, all that will happen is that the illegal drug addicts will move on to other drugs.

  4. I hope we can find meds that just help my pain and nothing else. That would be great for me and others.

Leave a comment

Email address is optional. If provided, your email will not be published or shared.