Close Menu
    Facebook X (Twitter) Instagram
    SciTechDaily
    • Biology
    • Chemistry
    • Earth
    • Health
    • Physics
    • Science
    • Space
    • Technology
    Facebook X (Twitter) Pinterest YouTube RSS
    SciTechDaily
    Home»Chemistry»Topological Insulators Show Promise as Flexible, Transparent Electrode
    Chemistry

    Topological Insulators Show Promise as Flexible, Transparent Electrode

    By Mike Ross , SLAC National Accelerator LaboratoryMarch 7, 20123 Comments4 Mins Read
    Facebook Twitter Pinterest Telegram LinkedIn WhatsApp Email Reddit
    Share
    Facebook Twitter LinkedIn Pinterest Telegram Email Reddit
    array of microcircuits made of a 10-nanometer-thick film of bismuth sulfide
    An array of microcircuits made of a 10-nanometer-thick film of bismuth sulfide, an exotic material called a topological insulator, on an insulating mica substrate can be flexed without damaging its electrical properties. Credit: Hailin Peng, Peking University

    Topological insulators, such as sheets of bismuth selenide, are ultra-thin sheets of material that are transparent, flexible, and highly conductive. Scientists at the SLAC National Accelerator Laboratory are studying bismuth selenide and other topological insulators for future applications like electrodes for solar cells, sensors, and optical communications devices.

    An international team of scientists with roots at SLAC and Stanford has shown that ultra-thin sheets of an exotic material remain transparent and highly conductive even after being deeply flexed 1,000 times and folded and creased like a piece of paper.

    The result could open this class of unusual materials, called topological insulators, to its first practical applications: flexible, transparent electrodes for solar cells, sensors, and optical communications devices.

    “It’s rare for a good conductor to be both transparent and durable as well,” said Zhi-Xun Shen of SLAC and Stanford’s Institute for Materials and Energy Sciences (SIMES).

    Researchers led by Shen, Zhongfan Liu, and Hailin Peng of Peking University in China, and Yulin Chen of Oxford University in England published their results last week in the journal Nature Chemistry. Until recently, Peng and Chen were graduate students and postdoctoral researchers at Stanford and SIMES. They have continued to collaborate with Shen’s research team after being named professors at their current universities.

    basic structural unit for bismuth selenide is a five-layer sandwich
    The basic structural unit for bismuth selenide is a five-layer sandwich made up of alternating single-atom sheets of selenium (orange) and bismuth (purple). Units are stacked on top of each other as thicker samples are made. The selenium-selenium bonds between the units are weak, allowing the overall material to flex durably without being damaged, unlike conventional electronic circuits. Credit: Hailin Peng, Peking University.

    The researchers made and tested samples of a compound in which sheets of bismuth and selenium, each just one atom thick, alternate to form five-layer units. The bonds between the units are weak, allowing the overall material to flex while retaining its durability. And as a topological insulator – a new state of quantum matter – the material conducts electricity only on its surface while its interior remains insulating, an unexpected property with unknown potential for fundamental research and practical applications.

    Since surface atoms dominate the structure of bismuth selenide, it is an exceptionally good electrical conductor – as good as gold. Unlike gold, however, bismuth selenide is transparent to infrared light, which we know as heat. While about half the solar energy that hits the Earth comes in the form of infrared light, few of today’s solar cells are able to collect it. The transparent electrodes on the surfaces of most cells are either too fragile or not transparent or conducting enough. The new material could get around that problem and allow cells to harvest more of the sun’s spectrum of wavelengths.

    The researchers’ experiments also showed that bismuth selenide does not degrade significantly in humid environments or when exposed to oxygen treatments that are common in manufacturing.

    “In addition to being a scientific success,” Chen said, “this demonstration should alert engineers and companies that topological insulators can also be important commercially.”

    Peng added, “Infrared light pulses carry phone calls and data through optical fiber networks, so bismuth selenide may be useful in communications devices. This material could also improve infrared sensors common in scientific equipment and aerospace systems.”

    Peng and colleagues made the bismuth selenide samples and conducted the flexing, conductivity, and transparency tests in China. The researchers confirmed that the samples were topological insulators at the Stanford Synchrotron Radiation Lightsource’s Beam Line 5-4 at SLAC.

    Theorists first proposed topological insulators in 2004, and experimentalists made the first examples, using mercury telluride at very low temperatures, two years later. Guided by theory, Chen, Shen and colleagues proved in 2009 that cheaper, more abundant, and easier-to-handle bismuth telluride and similar compounds containing antimony and selenium are topological insulators at room temperature. Also in 2009, Peng, Shen, and colleagues discovered important electrical conduction behavior in bismuth selenide nanoribbons.

    Reference: “Topological insulator nanostructures for near-infrared transparent flexible electrodes” by Hailin Peng, Wenhui Dang, Jie Cao, Yulin Chen, Di Wu, Wenshan Zheng, Hui Li, Zhi-Xun Shen and Zhongfan Liu, 26 February 2012, Nature Chemistry.
    DOI: 10.1038/nchem.1277

    Never miss a breakthrough: Join the SciTechDaily newsletter.

    Conductivity Electricity SLAC National Accelerator Laboratory Topological Insulators
    Share. Facebook Twitter Pinterest LinkedIn Email Reddit

    Related Articles

    Scientists Astonished by Strange Material That Can Be Made Like Plastic but Conducts Like Metal

    High-Speed X-Ray Lasers Reveal the Secret Crystal Structures of Small Molecules

    Bacterial Enzyme Converts CO2 Into Carbon Compounds 20x Faster Than Photosynthesis

    Making Electricity Cheaper: A Cellphone-Sized Device Automatically Adjusts a Home’s Power Use to Save Money

    Creating Metallic Water – While Avoiding an Explosion From Violent Chemistry

    In Remarkable Experiment, Scientists Create a Golden Drop of Metallic Water

    Unprecedented Nanoscale Look at Reaction That Limits the Efficiency of Generating Clean Hydrogen Fuel

    Scientists Home In on Pairs of Atoms That Boost a Catalyst’s Activity

    First Direct Look at How Light Excites Electrons to Kick Off a Chemical Reaction Within Millionths of a Billionth of a Second

    3 Comments

    1. Bill Bodge on November 3, 2013 5:48 pm

      Are there less expensive topological insulators that can be used to coat a hard surfaces?

      Reply
    2. Bill Bodge on November 3, 2013 5:52 pm

      I’m looking for a topological insulator that does not have a conducting surface, but insulates all the way through and is transparent.

      Reply
    3. Vernon Argro on November 19, 2013 7:09 am

      Well I definitely enjoyed studying it. This tip provided by you is very helpful for proper planning.

      Reply
    Leave A Reply Cancel Reply


    • Facebook
    • Twitter
    • Pinterest
    • YouTube

    Don't Miss a Discovery

    Subscribe for the Latest in Science & Tech!

    Trending News

    Scientists Discover Natural Compounds That Clear Alzheimer’s Proteins

    Astronomers Capture the “Eye of Sauron” Beaming at Earth

    Hubble Reveals a Rare Interstellar Comet Racing at 130,000 MPH Through Our Solar System

    A Third Type of Magnet? Researchers Confirm Exotic Altermagnetism

    Scientists Uncover Hidden Link Between Cholesterol Flow and Alzheimer’s Disease

    Study Warns: Your Dogs’ Drinking Water Could Be Laced With Dangerous Metals

    The Hidden Geometry That Could Explain the Universe

    Full ‘Bloom’: NASA’s Record-Breaking Radar Antenna Just Unfurled in Orbit

    Follow SciTechDaily
    • Facebook
    • Twitter
    • YouTube
    • Pinterest
    • Newsletter
    • RSS
    SciTech News
    • Biology News
    • Chemistry News
    • Earth News
    • Health News
    • Physics News
    • Science News
    • Space News
    • Technology News
    Recent Posts
    • This Tiny Star Hosts a Giant Planet That Breaks the Rules of Astronomy
    • Rare Supernova Defies Textbooks and Reveals Inner Layers of a Dying Star
    • Scientists Finally Capture Carbon’s Most Elusive Shape
    • AI That Finds “Shadows” in Fusion Reactors Could Unlock Clean Energy Faster
    • Record-Breaking “Watermelon” Nucleus Could Rewrite Atomic Science
    Copyright © 1998 - 2025 SciTechDaily. All Rights Reserved.
    • Science News
    • About
    • Contact
    • Editorial Board
    • Privacy Policy
    • Terms of Use

    Type above and press Enter to search. Press Esc to cancel.