Coral’s Worst Nightmare: Reef-Devouring Predator Survives Bleaching and Feasts on the Survivors

Juvenile Crown-of-Thorns Starfish Pictured With Coral

Juvenile crown-of-thorns starfish pictured with coral. Credit: Monique Webb, Byrne, et al.

The crown-of-thorns starfish is nature’s ultimate coral predator that has a circle of life perfectly adapted to warming waters.

Research conducted by marine biologists from the University of Sydney has found juvenile crown-of-thorns starfish can withstand tremendous heatwaves well above levels that kill coral. These starfish then develop into carnivorous predators that devour reefs just as they begin to regrow.

The Great Barrier Reef Predator

Crown-of-thorns starfish are native to the Great Barrier Reef and found in the Indo-Pacific region, but they are classified as a species of concern because the damage large populations cause to coral is more significant than any other species. They fall behind only cyclones and bleaching events in their impact on coral mortality.

New findings suggest the species’ resilience to warming waters could exacerbate the ravaging effect climate change has on coral reefs.

Study Details and Findings

The research was published on October 18 in the journal Global Change Biology, led by Professor Maria Byrne from the School of Life and Environmental Sciences. She is also a member of the Marine Science Institute and Sydney Environment Institute.

Life cycle of coral with crown-of-thorns starfish. Beginning with healthy coral, heatwave events induce coral bleaching, causing coral death and algal colonization. Corals then collapse and create rubble habitat for juvenile crown-of-thorns, which can tolerate the thermal stress and build up in numbers until the reef regrows and the juveniles emerge to eat the new coral. Credit: University of Sydney, Byrne et al.

Over the course of the experiment, juvenile crown-of-thorns displayed a surprisingly high heat tolerance, higher than that observed in their adult counterparts. This means that, even if the coral-eating adult stage declines in climate change-driven ocean warming scenarios, perhaps from a lack of their coral prey or from the heat, their herbivorous young can wait patiently for the opportune moment to grow into carnivores.

Impacts on Coral Ecosystems

Coral bleaching and death can be triggered when waters warm by 1-3 degrees Celsius (1.8-5.4 degrees Fahrenheit) above the normal summer maximum, depending on how long the temperature lasts.

“We found juvenile crown of thorns starfish can tolerate almost three times the heat intensity that causes coral bleaching, using a model that measures temperature over time,” Professor Byrne said.

Young and Old Juvenile Crown-of-Thorns Starfish

Young and old juvenile crown-of-thorns starfish. Credit: Monique Webb, Byrne, et al.

“This is an important finding that has implications for understanding the impacts of climate change on marine ecosystems, especially the influence of understudied small cryptic species,” Professor Byrne continued.

“Juveniles might well benefit from warming waters. The increase in the amount of their rubble habitat, generated by coral bleaching and mortality, allows their numbers to build over time.”

The Lifecycle of the Crown-of-Thorns Starfish

The crown-of-thorns starfish is nature’s ultimate coral predator, with a circle of life perfectly adapted to warming waters.

During outbreaks of their carnivorous adult phase, crown-of-thorns starfish dine pervasively on stony coral, leaving lifeless skeletons across the reef. These skeletons eventually become home to algae before crumbling. Bleaching-induced coral mortality has a similar effect.

The remains of dead coral may provide the perfect habitat for the starfish’s tiny, algae-eating offspring. According to previous research by Professor Byrne, the juveniles can survive, and wait, for at least six years for the reef to come back to life, and given the opportunity as coral recovers these juveniles can grow into coral-eating predators and start the cycle again.

“The heat resistance and potential for the juveniles to gradually build up in the reef infrastructure in coral rubble over years might be a phenomenon contributing to the initiation of adult crown-of-thorns starfish outbreaks,” said Matt Clements, PhD student and co-author of the study.

“Loss of natural predators due to overfishing and the build-up of nutrients in the water have been suspected to contribute to outbreaks of crown-of-thorns starfish. Now we have evidence that bleaching-induced coral mortality could aid the seafloor-dwelling juveniles, leading to subsequent large waves of adults in reefs which exacerbate the ravages of climate change.”

The researchers also identified factors that contribute to the juveniles’ ability to survive in warming conditions. They include small size, which may reduce physiological requirements, and their ability to feed on a variety of food sources, despite preferring a diet of coralline algae.

Reference: “Juvenile waiting stage crown-of-thorns sea stars are resilient in heatwave conditions that bleach and kill corals” by Maria Byrne, Dione J. Deaker, Mitchell Gibbs, Paulina Selvakumaraswamy and Matthew Clements, 18 October 2023, Global Change Biology.
DOI: 10.1111/gcb.16946

Be the first to comment on "Coral’s Worst Nightmare: Reef-Devouring Predator Survives Bleaching and Feasts on the Survivors"

Leave a comment

Email address is optional. If provided, your email will not be published or shared.