Improved Advanced Energy Storage Using New Nano-Engineering Strategy

Next Generation High Energy Battery Storage

Novel material nanoarchitecture enables the development of new-generation high-energy batteries beyond Li-ion chemistry. Credit: Supplied by University of Technology Sydney

New types of cathodes, suitable for advanced energy storage, can be developed using beyond-lithium ion batteries.

The rapid development of renewable energy resources has triggered tremendous demands in large-scale, cost-efficient, and high-energy-density stationary energy storage systems.

Lithium-ion batteries (LIBs) have many advantages but there are much more abundant metallic elements available such as sodium, potassium, zinc, and aluminum.

These elements have similar chemistries to lithium and have recently been extensively investigated, including sodium-ion batteries (SIBs), potassium-ion batteries (PIBs), zinc-ion batteries (ZIBs), and aluminum-ion batteries (AIBs). Despite promising aspects relating to redox potential and energy density, the development of these beyond-LIBs has been impeded by the lack of suitable electrode materials

New research led by Professor Guoxiu Wang from the University of Technology Sydney, and published in Nature Communications, describes a strategy using interface strain engineering in a 2D graphene nanomaterial to produce a new type of cathode. Strain engineering is the process of tuning a material’s properties by altering its mechanical or structural attributes.

“Beyond-lithium-ion batteries are promising candidates for high-energy-density, low-cost, and large-scale energy storage applications. However, the main challenge lies in the development of suitable electrode materials,” Professor Wang, Director of the UTS Centre for Clean Energy Technology, said.

“This research demonstrates a new type of zero-strain cathodes for reversible intercalation of beyond-Li+ ions (Na+, K+, Zn2+, Al3+) through interface strain engineering of a 2D multilayered VOPO4-graphene heterostructure.

When applied as cathodes in K+-ion batteries, we achieved a high specific capacity of 160 mAh/g and a large energy density of ~570 Wh/kg, presenting the best reported performance to date. Moreover, the as-prepared 2D multilayered heterostructure can also be extended as cathodes for high-performance Na+, Zn2+, and Al3+-ion batteries.

The researchers say this work heralds a promising strategy to utilize strain engineering of 2D materials for advanced energy storage applications.

“The strategy of strain engineering could be extended to many other nanomaterials for rational design of electrode materials towards high energy storage applications beyond lithium-ion chemistry,” Professor Wang said.

Reference: “Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium-based rechargeable batteries” by Pan Xiong, Fan Zhang, Xiuyun Zhang, Shijian Wang, Hao Liu, Bing Sun, Jinqiang Zhang, Yi Sun, Renzhi Ma, Yoshio Bando, Cuifeng Zhou, Zongwen Liu, Takayoshi Sasaki and Guoxiu Wang, 3 July 2020, Nature Communications.
DOI: 10.1038/s41467-020-17014-w

The research was a collaboration with Professor Takayoshi Sasaki from National Institute for Materials Science, Japan.

2 Comments on "Improved Advanced Energy Storage Using New Nano-Engineering Strategy"

  1. geometry dash | July 30, 2020 at 8:52 pm | Reply

    New types of cathodes, suitable for advanced energy storage, can be developed using beyond-lithium ion batteries.

  2. The Spiritual Insights that we receive from this type of research is related to the strain engineering technology when ions are introduced through intercalation, the expansion of the van der Waals spacing due to the ion size, and using the different size modulating the strain enhances the electron mobility

Leave a comment

Email address is optional. If provided, your email will not be published or shared.