New Evidence That the Moon Formed Via Earth Collision with Planet-Sized Body

New Isotopic Evidence Supports Moon Formation Via Earth Collision with Planet Sized Body

Fresh measurements of oxygen isotopes offer growing support for the theory that the Moon originated from a colossal collision between Earth and another planet-sized celestial body roughly 4.5 billion years ago. Credit: NASA

By using refined techniques to compare the measurements of oxygen isotopes in lunar samples with those from Earth, a team of astronomers has provided new evidence that the Moon formed from the collision of the Earth with another planet-sized astronomical body.

A new series of measurements of oxygen isotopes provides increasing evidence that the Moon formed from the collision of the Earth with another large, planet-sized astronomical body, around 4.5 billion years ago. This work is published in Science, and will be presented to the Goldschmidt geochemistry conference in California on 11th June.

Most planetary scientists believe that the Moon formed from an impact between the Earth and a planet-sized body, which has been given the name Theia. Efforts to confirm that the impact had taken place had centered on measuring the ratios between the isotopes of oxygen, titanium, silicon, and others. These ratios are known to vary throughout the solar system, but their close similarity between Earth and Moon conflicted with theoretical models of the collision that indicated that the Moon would form mostly from Theia, and thus would be expected to be compositionally different from the Earth.

Now a group of German researchers, led by Dr. Daniel Herwartz, have used more refined techniques to compare the ratios of 17O/16O in lunar samples, with those from Earth. The team initially used lunar samples which had arrived on Earth via meteorites, but as these samples had exchanged their isotopes with water from Earth, fresher samples were sought. These were provided by NASA from the Apollo 11, 12, and 16 missions; they were found to contain significantly higher levels of 17O/16O than their Earthly counterparts.

Dr Herwartz said “The differences are small and difficult to detect, but they are there. This means two things; firstly we can now be reasonably sure that the Giant collision took place. Secondly, it gives us an idea of the geochemistry of Theia. Theia seems to have been similar to what we call E-type chondrites. If this is true, we can now predict the geochemical and isotopic composition of the Moon, because the present Moon is a mixture of Theia and the early Earth. The next goal is to find out how much material of Theia is in the Moon”.

Most models estimate that the Moon is composed of around 70% to 90% material from Theia, with the remaining 10% to 30% coming from the early Earth. However, some models argue for as little as 8% Theia in the Moon. Dr. Herwartz said that the new data indicate that a 50:50 mixture seems possible, but this needs to be confirmed.

The team used an advanced sample preparation technique before measuring the samples via stable isotope ratio mass spectrometry, which showed a 12 parts per million (± 3 ppm) difference in 17O/16O ratio between the Earth and the Moon.

Dr. Daniel Herwartz will present “The elevated Δ17O composition of the Moon relative to the Earth” at the Goldschmidt conference, Sacramento, California, on 11th June at 09.45, Eastern Time. The Goldschmidt conference is the world’s leading annual conference on geochemistry,

Reference: “Identification of the giant impactor Theia in lunar rocks” by Daniel Herwartz, Andreas Pack, Bjarne Friedrichs and Addi Bischoff, 6 June 2014, Science.
DOI: 10.1126/science.1251117


Be the first to comment on "New Evidence That the Moon Formed Via Earth Collision with Planet-Sized Body"

Leave a comment

Email address is optional. If provided, your email will not be published or shared.