Scientific Breakthrough: New State of Matter Discovered

State of Matter

A team of physicists has uncovered a new state of matter—a breakthrough that offers promise for increasing storage capabilities in electronic devices and enhancing quantum computing.

Breakthrough Offers Promise for Enhanced Storage and Computation Capabilities

A team of physicists has uncovered a new state of matter—a breakthrough that offers promise for increasing storage capabilities in electronic devices and enhancing quantum computing.

“Our research has succeeded in revealing experimental evidence for a new state of matter—topological superconductivity,” says Javad Shabani, an assistant professor of physics at New York University. “This new topological state can be manipulated in ways that could both speed calculation in quantum computing and boost storage.”

The discovery, reported in a paper, “Phase signature of topological transition in Josephson Junctions,” on arXiv, was conducted with Igor Zutic at the University at Buffalo and Alex Matos-Abiague at Wayne State University.

The work centers on quantum computing—a method that can make calculations at significantly faster rates than can conventional computing. This is because conventional computers process digital bits in the form of 0s and 1s while quantum computers deploy quantum bits (qubits) to tabulate any value between 0 and 1, exponentially lifting the capacity and speed of data processing.

In their research, Shabani and his colleagues analyzed a transition of quantum state from its conventional state to a new topological state, measuring the energy barrier between these states. They supplemented this by directly measuring signature characteristics of this transition in the order parameter that governs the new topological superconductivity phase.

Here, they focused the inquiry on Majorana particles, which are their own antiparticles—substances with the same mass, but with the opposite physical charge. Scientists see value in Majorana particles because of their potential to store quantum information in a special computation space where quantum information is protected from the environment noise. However, there is no natural host material for these particles, also known as Majorana fermions. As a result, researchers have sought to engineer platforms—i.e., new forms of matter—on which these calculations could be conducted.

“The new discovery of topological superconductivity in a two-dimensional platform paves the way for building scalable topological qubits to not only store quantum information, but also to manipulate the quantum states that are free of error,” observes Shabani.

The research was funded, in part, by a grant from the U.S. Department of Defense’s Defense Advanced Research Projects Agency (DARPA) (D18AP00007).

6 Comments on "Scientific Breakthrough: New State of Matter Discovered"

  1. Only time will tell if the is another Biden..believe in our truth and not the facts scenario.

  2. There are no functioning true quantum computers so this is just hyperbole.

  3. Quantum computing will remain a laboratory toy as long as it requires operating temperatures in single-digit Kelvin degrees in order to function.

  4. “There are no functioning true quantum computers so this is just hyperbole.”

    Yes there are.
    https://www.newscientist.com/article/2189909-ibm-unveils-its-first-commercial-quantum-computer/

  5. Mark A. R. Keller | August 15, 2019 at 3:20 pm | Reply

    Buzz, thanks for what you did there. BUT … they don’t care. They don’t care about facts; truth, logic, links or sources.

  6. For those trying to pander the IBM Q system One as a true quantum computer please read this article. It is a symbol not a breakthrough.

    https://smartwatchestechnology.com/the-new-ibm-quantum-computer-is-a-symbol-and-not-a-breakthrough/

Leave a comment

Email address is optional. If provided, your email will not be published or shared.