Scientists Identify Potential Treatment to Reverse Amnesia

Young Woman Eyes Closed

Recent research indicates that memory loss from repeated head impacts, common in athletes, may be reversible. The study, combining efforts from Georgetown University and Trinity College Dublin, shows that activating specific neurons can counteract amnesia in mice, paving the way for potential treatments to restore cognitive function in affected individuals. Credit:

A study conducted on mice, aimed at understanding memory decline in individuals subjected to recurrent head trauma, such as athletes, indicates that this condition might be reversible. The findings suggest that the amnesia and diminished memory observed after head injuries result from the insufficient reactivation of neurons responsible for memory formation.

The study, conducted by researchers at Georgetown University Medical Center in collaboration with Trinity College Dublin, Ireland, was recently published in the Journal of Neuroscience.

Findings on Reversible Memory Loss

Importantly for diagnostic and treatment purposes, the researchers found that the memory loss attributed to head injury was not a permanent pathological event driven by a neurodegenerative disease. Indeed, the researchers could reverse the amnesia to allow the mice to recall the lost memory, potentially allowing cognitive impairment caused by head impact to be clinically reversed.

The Georgetown investigators had previously found that the brain adapts to repeated head impacts by changing the way the synapses in the brain operate. This can cause trouble in forming new memories and remembering existing memories. In their new study, investigators were able to trigger mice to remember memories that had been forgotten due to head impacts.

Potential for Treatment

“Our research gives us hope that we can design treatments to return the head-impact brain to its normal condition and recover cognitive function in humans that have poor memory caused by repeated head impacts,” says the study’s senior investigator, Mark Burns, Ph.D., a professor and Vice-Chair in Georgetown’s Department of Neuroscience and director of the Laboratory for Brain Injury and Dementia.

In the new study, the scientists gave two groups of mice a new memory by training them in a test they had never seen before. One group was exposed to a high frequency of mild head impacts for one week (similar to contact sport exposure in people) and one group were controls that didn’t receive the impacts. The impacted mice were unable to recall the new memory a week later.

Understanding Memory and Impact

“Most research in this area has been in human brains with chronic traumatic encephalopathy (CTE), which is a degenerative brain disease found in people with a history of repetitive head impact,” said Burns. “By contrast, our goal was to understand how the brain changes in response to the low-level head impacts that many young football players regularly experience.”

Researchers have found that, on average, college football players receive 21 head impacts per week with defensive ends receiving 41 head impacts per week. The number of head impacts to mice in this study were designed to mimic a week of exposure for a college football player, and each single head impact by itself was extraordinarily mild.

Using genetically modified mice allowed the researchers to see the neurons involved in learning new memories, and they found that these memory neurons (the “memory engram”) were equally present in both the control mice and the experimental mice.

To understand the physiology underlying these memory changes, the study’s first author, Daniel P. Chapman, Ph.D., said, “We are good at associating memories with places, and that’s because being in a place, or seeing a photo of a place, causes a reactivation of our memory engrams. This is why we examined the engram neurons to look for the specific signature of an activated neuron. When the mice see the room where they first learned the memory, the control mice are able to activate their memory engram, but the head impact mice were not. This is what was causing the amnesia.”

The researchers were able to reverse the amnesia to allow the mice to remember the lost memory using lasers to activate the engram cells. “We used an invasive technique to reverse memory loss in our mice, and unfortunately this is not translatable to humans,” Burns adds. “We are currently studying a number of non-invasive techniques to try to communicate to the brain that it is no longer in danger, and to open a window of plasticity that can reset the brain to its former state.”

Reference: “Amnesia after repeated head impact is caused by impaired synaptic plasticity in the memory engram” by Daniel P. Chapman, Sarah D. Power, Stefano Vicini, Tomás J. Ryan and Mark P. Burns, 15 January 2024,Journal of Neuroscience.
DOI: 10.1523/JNEUROSCI.1560-23.2024

The study was funded by the National Institutes of Health and CTE Research Fund at Georgetown.

Be the first to comment on "Scientists Identify Potential Treatment to Reverse Amnesia"

Leave a comment

Email address is optional. If provided, your email will not be published or shared.