Twin Supernovae Open Up New Possibilities for Precision Cosmology

Supernova Explosion

Cosmologists have discovered a method to double the accuracy of measuring distances to supernova explosions.

Cosmologists have found a way to double the accuracy of measuring distances to supernova explosions – one of their tried-and-true tools for studying the mysterious dark energy that is making the universe expand faster and faster. The results from the Nearby Supernova Factory (SNfactory) collaboration, led by Greg Aldering of the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), will enable scientists to study dark energy with greatly improved precision and accuracy, and provide a powerful crosscheck of the technique across vast distances and time. The findings will also be central to major upcoming cosmology experiments that will use new ground and space telescopes to test alternative explanations of dark energy.

Two papers published in The Astrophysical Journal report these findings, with Kyle Boone as lead author. Currently, a postdoctoral fellow at the University of Washington, Boone is a former graduate student of Nobel laureate Saul Perlmutter, the Berkeley Lab senior scientist and UC Berkeley professor who led one of the teams that originally discovered dark energy. Perlmutter was also a co-author on both studies.

Supernovae were used in 1998 to make the startling discovery that the expansion of the universe is speeding up, rather than slowing down as had been expected. This acceleration – attributed to the dark energy that makes up two-thirds of all the energy in the universe – has since been confirmed by a variety of independent techniques as well as with more detailed studies of supernovae.

The discovery of dark energy relied on using a particular class of supernovae, Type Ia. These supernovae always explode with nearly the same intrinsic maximum brightness. Because the observed maximum brightness of the supernova is used to infer its distance, the small remaining variations in the intrinsic maximum brightness limited the precision with which dark energy could be tested. Despite 20 years of improvements by many groups, supernovae studies of dark energy have until now remained limited by these variations.

Two Supernovae Spectra

The upper left figure shows the spectra — brightness versus wavelength — for two supernovae. One is nearby and one is very distant. To measure dark energy, scientists need to measure the distance between them very accurately, but how do they know whether they are the same? The lower right figure compares the spectra — showing that they are indeed “twins.” This means their relative distances can be measured to an accuracy of 3 percent. The bright spot in the upper-middle is a Hubble Space Telescope image of supernova 1994D (SN1994D) in galaxy NGC 4526. Credit: Graphic: Zosia Rostomian/Berkeley Lab; Photo: NASA/ESA

Quadrupling the number of supernovae

The new results announced by the SNfactory come from a multi-year study devoted entirely to increasing the precision of cosmological measurements made with supernovae. Measurement of dark energy requires comparisons of the maximum brightnesses of distant supernovae billions of light-years away with those of nearby supernovae “only” 300 million light-years away. The team studied hundreds of such nearby supernovae in exquisite detail. Each supernova was measured a number of times, at intervals of a few days. Each measurement examined the spectrum of the supernova, recording its intensity across the wavelength range of visible light. An instrument custom-made for this investigation, the SuperNova Integral Field Spectrometer, installed at the University of Hawaii 2.2-meter telescope at Maunakea, was used to measure the spectra.

“We’ve long had this idea that if the physics of the explosion of two supernovae were the same, their maximum brightnesses would be the same. Using the Nearby Supernova Factory spectra as a kind of CAT scan through the supernova explosion, we could test this idea,” said Perlmutter.

Indeed, several years ago, physicist Hannah Fakhouri, then a graduate student working with Perlmutter, made a discovery key to today’s results. Looking at a multitude of spectra taken by the SNfactory, she found that in quite a number of instances, the spectra from two different supernovae looked very nearly identical. Among the 50 or so supernovae, some were virtually identical twins. When the wiggly spectra of a pair of twins were superimposed, to the eye there was just a single track. The current analysis builds on this observation to model the behavior of supernovae in the period near the time of their maximum brightness.

The new work nearly quadruples the number of supernovae used in the analysis. This made the sample large enough to apply machine-learning techniques to identify these twins, leading to the discovery that Type Ia supernova spectra vary in only three ways. The intrinsic brightnesses of the supernovae also depend primarily on these three observed differences, making it possible to measure supernova distances to a remarkable accuracy of about 3%.

Just as important, this new method does not suffer from the biases that have beset previous methods, seen when comparing supernovae found in different types of galaxies. Since nearby galaxies are somewhat different than distant ones, there was a serious concern that such dependence would produce false readings in the dark energy measurement. Now this concern can be greatly reduced by measuring distant supernovae with this new technique.

In describing this work, Boone noted, “Conventional measurement of supernova distances uses light curves – images taken in several colors as a supernova brightens and fades. Instead, we used a spectrum of each supernova. These are so much more detailed, and with machine-learning techniques it then became possible to discern the complex behavior that was key to measuring more accurate distances.”

The results from Boone’s papers will benefit two upcoming major experiments. The first experiment will be at the 8.4-meter (27.6-foot) Rubin Observatory, under construction in Chile, with its Legacy Survey of Space and Time, a joint project of the Department of Energy and the National Science Foundation. The second is NASA’s forthcoming Nancy Grace Roman Space Telescope. These telescopes will measure thousands of supernovae to further improve the measurement of dark energy. They will be able to compare their results with measurements made using complementary techniques.

Aldering, also a co-author on the papers, observed that “not only is this distance measurement technique more accurate, it only requires a single spectrum, taken when a supernova is brightest and thus easiest to observe – a game changer!” Having a variety of techniques is particularly valuable in this field where preconceptions have turned out to be wrong and the need for independent verification is high.

The SNfactory collaboration includes Berkeley Lab, the Laboratory for Nuclear Physics and High Energy at Sorbonne University, the Center for Astronomical Research of Lyon, the Institute of Physics of the 2 Infinities at the University Claude Bernard, Yale University, Germany’s Humboldt University, the Max Planck Institute for Astrophysics, China’s Tsinghua University, the Center for Particle Physics of Marseille, and Clermont Auvergne University.

This work was supported by the Department of Energy’s Office of Science, NASA’s Astrophysics Division, the Gordon and Betty Moore Foundation, the French National Institute of Nuclear and Particle Physics and the National Institute for Earth Sciences and Astronomy of the French National Centre for Scientific Research, the German Research Foundation and German Aerospace Center, the European Research Council, Tsinghua University, and the National Natural Science Foundation of China.

Supernova SN 2011fe

An example of a supernova: The Palomar Transient Factory caught SN 2011fe in the Pinwheel Galaxy in the vicinity of the Big Dipper on 24 August 2011. Credit: B. J. Fulton, Las Cumbres Observatory Global Telescope Network

Additional background

In 1998, two competing groups studying supernovae, the Supernova Cosmology Project and the High-z Supernova Search team, both announced they had found evidence that, contrary to expectations, the expansion of the universe was not slowing but becoming faster and faster. Dark energy is the term used to describe the cause of the acceleration. The 2011 Nobel Prize was awarded to leaders of the two teams: Saul Perlmutter of Berkeley Lab and UC Berkeley, leader of the Supernova Cosmology Project, and to Brian Schmidt of the Australian National University and Adam Riess of Johns Hopkins University, from the High-z team.

Additional techniques for measuring dark energy include the DOE-supported Dark Energy Spectroscopic Instrument, led by Berkeley Lab, which will use spectroscopy on 30 million galaxies in a technique called baryon acoustic oscillation. The Rubin Observatory will also use another called weak gravitational lensing.


“The Twins Embedding of Type Ia Supernovae. I. The Diversity of Spectra at Maximum Light” by K. Boone, G. Aldering, P. Antilogus, C. Aragon, S. Bailey, C. Baltay, S. Bongard, C. Buton, Y. Copin, S. Dixon, D. Fouchez, E. Gangler, R. Gupta, B. Hayden, W. Hillebrandt, A. G. Kim, M. Kowalski, D. Küsters, P.-F. Léget, F. Mondon, J. Nordin, R. Pain, E. Pecontal, R. Pereira, S. Perlmutter, K. A. Ponder, D. Rabinowitz, M. Rigault, D. Rubin, K. Runge, C. Saunders, G. Smadja, N. Suzuki, C. Tao, S. Taubenberger, R. C. Thomas and M. Vincenzi, 6 May 2021, The Astrophysical Journal.
DOI: 10.3847/1538-4357/abec3c

“The Twins Embedding of Type Ia Supernovae. II. Improving Cosmological Distance Estimates” by K. Boone, G. Aldering, P. Antilogus, C. Aragon, S. Bailey, C. Baltay, S. Bongard, C. Buton, Y. Copin, S. Dixon, D. Fouchez, E. Gangler, R. Gupta, B. Hayden, W. Hillebrandt, A. G. Kim, M. Kowalski, D. Küsters, P.-F. Léget, F. Mondon, J. Nordin, R. Pain, E. Pecontal, R. Pereira, S. Perlmutter, K. A. Ponder, D. Rabinowitz, M. Rigault, D. Rubin, K. Runge, C. Saunders, G. Smadja, N. Suzuki, C. Tao, S. Taubenberger, R. C. Thomas and M. Vincenzi, 6 May 2021, The Astrophysical Journal.
DOI: 10.3847/1538-4357/abec3b

4 Comments on "Twin Supernovae Open Up New Possibilities for Precision Cosmology"

  1. BibhutibhusanPatel | May 9, 2021 at 11:57 pm | Reply

    Ùße òf týpe 1a sùpernova fòŕ ďetermìnatiòn òf change ìn mass and
    ďìstance ìs èffectìvè anď efficieñt.So ìncrèaßè ìn èxpansion rate and dark eneŕgy can be measùŕed or ìnďìçaþed.Thìs mèthòd can alsò be used for the puŕpòse of compaŕisìon fòr òther methòds.

  2. James Harford | May 10, 2021 at 9:39 am | Reply

    3% is good, but how much of an improvement is that. What was the original accuracy?

    • Torbjörn Larsson | May 10, 2021 at 12:53 pm | Reply

      That is a good question!

      The competing methods for studying expansion rate – now dominated by dark energy – based on cosmic background radiation and galaxy surveys are approaching 1 % uncertainty.

      “When combining the results of SDSS BAO and RSD, Planck, Pantheon Type Ia supernovae (SNe Ia), and DES weak lensing and clustering measurements, all multiple-parameter extensions remain consistent with a ΛCDM model. Regardless of cosmological model, the precision on each of the three parameters, Ω_Λ, H_0, and σ_8, remains at roughly 1%, showing changes of less than 0.6% in the central values between models.”

      [“Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory”
      Shadab Alam et al.
      Phys. Rev. D 103, 083533 – Published 28 April 2021]

      Among other things, whereas dark matter confidence has approached 45 [!] sigma, these surveys observe dark energy at 11 sigma.

      “Typically, a scientific result to 5-Sigma is taken as confirmation. A result at 11-Sigma is so strong it is about as close to certainty that we can get. Dark energy and the accelerating expansion it drives is definitely real.”

      [“11-Sigma Detection of Dark Energy Comes From Measuring Over a Million Extremely Distant Galaxies”, Universe Today]

      Supernova distance estimates are based on the cosmic distance ladder, which are inherently much less certain.

      “Using Type Ia supernovae is one of the most accurate methods, particularly since supernova explosions can be visible at great distances (their luminosities rival that of the galaxy in which they are situated), much farther than Cepheid Variables (500 times farther). Much time has been devoted to the refining of this method. The current uncertainty approaches a mere 5%, corresponding to an uncertainty of just 0.1 magnitudes.”

      [“Cosmic distance ladder”, Wikipedia]

      So they are pretty much doubling the typical confidence at the low uncertainty tail (linear approximation) of an assumed normal distribution of measurement values.

      All these new and improved methods of measuring (distances and) the expansion rate is exciting. The one that excited me the most is one that uses fast radio bursts, the new kid in town, and may give results in “the next year or two “:

      “The largest error in the new method comes from not knowing precisely how the FRB signal disperses as it exits its home galaxy before entering intergalactic space, where the gas and dust content is better understood. With a few hundred FRBs, the team estimates that it could reduce the uncertainties and match the accuracy of other methods such as supernovas.

      “It’s a first measurement, so not too surprising that the current results are not as constraining as other more matured probes,” says Birrer.

      New FRB data might be coming soon. Many new radio observatories are coming online and larger surveys, such as ones proposed for the Square Kilometre Array, could discover tens to thousands of FRBs every night. Hagstotz expects there will sufficient FRBs with distance estimates in the next year or two to accurately determine the Hubble constant.”
      [ ]

  3. James Krause | May 11, 2021 at 2:33 pm | Reply

    Twin Supernovae Open Up New Possibilities for Precision Cosmology

    That’s awesome! I need to get my nails done.

Leave a comment

Email address is optional. If provided, your email will not be published or shared.