Challenging Hydrodynamic Laws: Unraveling the Mysteries of Superfluid Turbulence

Superfluid Abstract

Researchers have developed a theory suggesting the existence of quantum viscosity in superfluids, potentially bridging classical and quantum hydrodynamics. This novel approach, which involves analyzing the fall of a sphere in a superfluid, seeks to validate the Reynolds similitude in a quantum context, challenging long-held beliefs in fluid dynamics. Credit:

A theoretical framework aimed at measuring Reynolds similitude in superfluids could potentially prove the presence of quantum viscosity.

Every liquid or gas, ranging from the air enveloping our planet to the blood coursing through our veins, possesses a measurable property known as viscosity. This property dictates how the fluid behaves when it comes into contact with any substance. If the viscosity is higher, the fluid flows calmly, a state known as laminar. If the viscosity decreases, the fluid undergoes the transition from laminar to turbulent flow.

The degree of laminar or turbulent flow is referred to as the Reynolds number, which is inversely proportional to the viscosity. The Reynolds law of dynamic similarity or Reynolds similitude, states that if two fluids flow around similar structures with different length scales, they are hydrodynamically identical provided they exhibit the same Reynolds number.

Quantum Superfluids and Reynolds Similitude

However, this Reynolds similitude is not applied to quantum superfluids, as they do not have viscosity — at least, that’s what researchers have believed. Now, a researcher from the Nambu Yoichiro Institute of Theoretical and Experimental Physics at Osaka Metropolitan University in Japan has theorized a way to examine the Reynolds similitude in superfluids, which could demonstrate the existence of quantum viscosity in superfluids.

Schematics of Wake Behind a Sphere Moving From Right to Left in Quantum Liquid He II

(Upper) Drag is zero without quantum vortices at T = 0. (Lower) Coarse-grained quantum vortices can reproduce the prediction of the Reynolds similitude by forming a turbulent wake with high Reynolds number defined with the quantum viscosity. The inset represents a microscopic view of quantum vortices in the turbulent wake. Credit: Hiromitsu Takeuchi, Osaka Metropolitan University

Dr. Hiromitsu Takeuchi, a lecturer in the Graduate School of Science at Osaka Metropolitan University, recently published his approach in Physical Review B.

Overturning Traditional Theories

“Superfluids have long been considered an obvious exception to the Reynolds similitude,” Dr. Takeuchi said, explaining that the Reynolds law of similitude states that if two flows have the same Reynolds number, then they are physically identical. “The concept of quantum viscosity overturns the common sense of superfluid theory, which has a long history of more than half a century. Establishing similitude in superfluids is an essential step to unify classical and quantum hydrodynamics.”

However, quantum superfluids can have turbulence, resulting in a quantum quandary: Turbulence in fluids requires dissipation, so how can superfluid turbulence experience dissipation without viscosity? They must have dissipation and may follow the Reynolds similitude, but the right approach to examine it had not yet been developed.

These characteristics could be examined, Dr. Takeuchi theorizes, by analyzing how a solid sphere falls into a superfluid. By combining the terminal speed of the sphere’s fall with the resistance the sphere encounters from the fluid as it falls, researchers can determine an analogue for the Reynolds similitude. This means effective viscosity, called the quantum viscosity, can be measured.

“This study focuses on a theoretical issue in understanding quantum turbulence in superfluids and shows that the Reynolds similitude in superfluids can be verified by measuring the terminal velocity of an object falling in a superfluid,” Dr. Takeuchi said. “If this verification can be made, then this suggests that quantum viscosity exists even in pure superfluids at absolute zero. I can’t wait to see it verified through experimentation.”

Reference: “Quantum viscosity and the Reynolds similitude of a pure superfluid” by Hiromitsu Takeuchi, 11 January 2024, Physical Review B.
DOI: 10.1103/PhysRevB.109.L020502

The study was funded by the Japan Science and Technology Agency, the Japan Society for the Promotion of Science, and the Osaka Metropolitan University (OMU) Strategic Research Promotion Project.

1 Comment on "Challenging Hydrodynamic Laws: Unraveling the Mysteries of Superfluid Turbulence"

  1. Bao-hua ZHANG | March 6, 2024 at 7:24 pm | Reply

    Researchers have developed a theory suggesting the existence of quantum viscosity in superfluids, potentially bridging classical and quantum hydrodynamics.
    Please answer:
    1. What is the physical reality of quantum mechanics?
    2. What is the physical essence of quantum viscosity?
    3. Which is two-dimensional, quantum or topological vortex?
    4. Is quantum mechanics related to the spin of topological vortices?
    5. Can multiple or countless topological vortex spins form a synchronization effect?
    6. Are so-called academic journals (such as Physical Review Letters, Nature, Science, etc.) scientific and honest?
    and so on.

    Today, we have already entered the era of the internet. With the help of artificial intelligence and big data, discussions on scientific knowledge have become open and transparent. However, a group of editors of so-called academic journals (such as Physical Review Letters, Nature, Science, etc.) are mystifying themselves. They only care about their own so-called sufficiently high priority rating, general significance, discipline, novelty, etc., and do not care about what science and pseudoscience are.

    Science and pseudoscience are not determined by a publication, an organization or a person, nor by you or me, but by mathematics the final say. Physical models must be based on mathematics or mathematical models in order to be scientific, convincing, and in accordance with natural laws.

    The branch of mathematics known as topology has become a cornerstone of modern physics. The perpetually swirling topological vortices defy traditional physics’ expectations. A physical properties of topological vortices is their to spontaneously begin to change periodically in time, even though the system does not experience corresponding periodic interference. Therefore, in the interaction of topological vortices, time is both absolute and relative,and physics often requires treating space and time at the same level.

    Low-dimensional spacetime matter is the foundation of high-dimensional spacetime matter. Low-dimensional spacetime matter (such as topological vortex) can form new material structures and derive more complex physical properties via interactions and self-organization. It is extremely wrong and irresponsible to imagine low dimensional spacetime matter using high-dimensional spacetime matter.

    Science must follow mathematical rules. For example, the Standard Model (SM) is considered to be one of the most significant achievements of physics in the 20th century. However, the magnetic moment of μ particle is larger than expected, revealed by a g-2 experiment at Fermilab, suggests that the established theory (such as SM) of fundamental particles is incomplete. Furthermore, the SM omitting gravitation, it not involved the time problem and when the particle movement starts. Mathematics is the foundation of science. Physics must respect the scientific nature of mathematics and mathematical models. The SM must be based on mathematical models in order to be scientific, convincing, and in line with natural laws.

    I hope researchers are not fooled by the pseudoscientific theories of the Physical Review Letters (PRL), and hope more people dare to stand up and fight against rampant pseudoscience.
    The so-called academic journals (such as Physical Review Letters, Nature, Science, etc.) firmly believe that two high-dimensional spacetime objects (such as two sets of cobalt-60) rotating in opposite directions can be transformed into two objects that mirror each other, is a typical case of pseudoscience rampant.
    If researchers are really interested in Science and Physics, you can browse and

Leave a comment

Email address is optional. If provided, your email will not be published or shared.