Counting Conundrum – Nerve Cells Can Detect Small Numbers of Things Better Than Large Numbers of Things

Brain Waveforms Neurons Firing

Humans quickly identify small numbers (up to four) but struggle with larger ones. Recent research reveals the brain has distinct mechanisms for processing small versus large quantities. The brain waveforms show when neurons are firing. Credit: Christian Burkert/Volkswagen-Stiftung/University of Bonn

Research conducted in Tübingen and Bonn has identified evidence of two separate processing mechanisms.

When presented with two to four apples, we can rapidly discern the count. However, with five or more apples, our recognition time increases and we frequently miscalculate. In fact, the brain does actually register smaller numbers of things differently than larger ones. Recent research, conducted by the University of Tübingen, University of Bonn, and University Hospital Bonn, shows that the brain processes smaller quantities differently than larger ones. These findings were recently reported in the journal Nature Human Behaviour.

Imagine that somebody shows us a photo of a string quartet and asks us to say how many people there are in the picture. There is not enough time to count them but we can all answer like a shot: “Four!” The next picture shows a septet and again we are only given enough time to take a quick look. We hesitate and are not quite so confident this time: “Eight.” The correct number is actually seven but we were very close.

There seem to be two distinctive ways in which we as humans tend to process numbers of things: We are usually able to detect small numbers of things very quickly and correctly. This is also described as “subitizing” in research circles. However, this method changes suddenly when there are five elements or more: We need more and more time to answer and our answers become increasingly imprecise.

Ultrafine Electrodes Implanted in the Temporal Lobes of Epilepsy Patients

Using ultrafine electrodes implanted in the temporal lobes of epilepsy patients, researchers can visualize the activity of single neurons in different brain regions. Credit: Christian Burkert/Volkswagen Foundation/University of Bonn

Some researchers have thus speculated that there are two different processing methods in the brain – a precise one for small numbers and an estimation mechanism for larger numbers of things. “However, this idea has been disputed up to now,” explains Prof. Florian Mormann from the Department of Epileptology at the University Hospital Bonn, who carries out research at the University of Bonn. “It could also be that our brain always makes an estimate but the error rates for smaller numbers of things are so low that they simply go unnoticed.”

The neurons for smaller numbers of things are more selective

The recent study actually indicates, however, that we do indeed process small and large numbers of things differently. The research groups involved in the project were able to demonstrate some years ago that the brain has nerve cells responsible for each number. Some neurons fire, for example, primarily for two elements, others for four elements, and again others for seven elements. “However, the neurons also fire in response to slight variations in the number,” explains Prof. Andreas Nieder from the University of Tübingen, who was the other main author of the study alongside Mormann. “A brain cell for a number of “seven” elements thus also fires for six and eight elements but more weakly. The same cell is still activated but even less so for five or nine elements.”

Set of Dots Visual Graph Study Participants

The study participants saw a set of dotson the screen in front of them for half a second. After a short pause they had to indicate whether the number had been even or odd. If the number of dots was less than five, they usually gave the correct answer without hesitation. Above that, both response time and error rate steadily increased. Credit: AG Mormann/University of Bonn

Nieder has already been able to demonstrate this “numerical distance effect” in experiments on monkeys. Interestingly, this effect only appears to occur in humans at higher numbers. “There seems to be an additional mechanism for numbers of around less than five elements that makes these neurons more precise,” says the neurobiologist.

When a brain cell for a number of three things fires, it simultaneously inhibits the brain cells for the numbers two and four. This reduces the risk that these cells will also incorrectly fire for the number three. However, this mechanism does not exist for the neurons activated for numbers five, six or eight. This is why there is a higher error rate for these numbers.

Observing individual brain cells at work

A special feature of the University Hospital Bonn benefited the researchers in their study: The Department of Epileptology at the hospital specializes in brain surgery. The doctors there try to treat epilepsy by carrying out operations to remove the diseased nerve tissue. In order to identify the location of the epileptogenic focus, they sometimes first insert electrodes into the affected person’s brain.

Seventeen patients participated in the latest study. In preparation for their operations, microelectrodes as fine as a human hair were inserted into the temporal lobe. “We were able to use them to measure the reaction of individual nerve cells to visual stimuli,” explains Esther Kutter, who carried out a large proportion of the experiments for her doctorate in the research group headed by Prof. Mormann.

The test subjects were seated in front of a computer screen on which different numbers of dots appeared for half a second. The participants were then asked to state whether they had seen an even or odd number of dots. They were able to respond very quickly and made practically no mistakes up to a number of four dots. After that, the number of errors increased with the number of dots, as did the amount of thinking time that the participants needed to complete their task.

This work will open up new insights into how numbers are processed in the human brain. In the long term, the findings could lead to a better understanding of dyscalculia, a developmental disorder associated with a poor understanding of numbers.

Reference: “Distinct neuronal representation of small and large numbers in the human medial temporal lobe” by Esther F. Kutter, Gert Dehnen, Valeri Borger, Rainer Surges, Florian Mormann and Andreas Nieder, 2 October 2023, Nature Human Behaviour.
DOI: 10.1038/s41562-023-01709-3

Participating institutes and funding: The University of Tübingen, the University of Bonn, and the University Hospital Bonn participated in the study. The research was funded by the German Research Foundation (DFG), the German Federal Ministry for Education and Research (BMBF) and the iBehave Research Network in the State of North Rhine-Westphalia.

Be the first to comment on "Counting Conundrum – Nerve Cells Can Detect Small Numbers of Things Better Than Large Numbers of Things"

Leave a comment

Email address is optional. If provided, your email will not be published or shared.