Energy-Efficient Tuning of Spintronic Neurons to Imitate the Non-linear Oscillatory Neural Networks of the Human Brain

Spintronic Neurons Concept

The human brain efficiently executes highly sophisticated tasks, such as image and speech recognition, with an exceptionally lower energy budget than today’s computers can. The development of energy-efficient and tunable artificial neurons capable of emulating brain-inspired processes has, therefore, been a major research goal for decades.

Researchers at the University of Gothenburg and Tohoku University jointly reported on an important experimental advance in this direction, demonstrating a novel voltage-controlled spintronic microwave oscillator capable of closely imitating the non-linear oscillatory neural networks of the human brain.

The research team developed a voltage-controlled spintronic oscillator, whose properties can be strongly tuned, with negligible energy consumption. “This is an important breakthrough as these so-called spin Hall nano-oscillators (SHNOs) can act as interacting oscillator-based neurons but have so far lacked an energy-efficient tuning scheme — an essential prerequisite to train the neural networks for cognitive neuromorphic tasks,” proclaimed Shunsuke Fukami, co-author of the study. “The expansion of the developed technology can also drive the tuning of the synaptic interactions between each pair of spintronic neurons in a large complex oscillatory neural network.”

Energy Efficient Tuning of Spintronic Neurons

Scanning electron microscopy image and schematic of cross-sectional structure of the created spin-Hall nano-oscillator device with the gate electrode. Credit: Johan Åkerman and Shunsuke Fukami

Earlier this year, the Johan Åkerman group at the University of Gothenburg demonstrated, for the first time, 2D mutually synchronized arrays accommodating 100 SHNOs while occupying an area of less than a square micron. The network can mimic neuron interactions in our brain and carry out cognitive tasks. However, a major bottleneck in training such artificial neurons to produce different responses to different inputs has been the lack of the scheme to control individual oscillator inside such networks.

The Johan Åkerman group teamed up with Hideo Ohno and Shunsuke Fukami at Tohoku University to develop a bow tie-shaped spin Hall nano-oscillator made from an ultrathin W/CoFeB/MgO material stack with an added functionality of a voltage controlled gate over the oscillating region [Fig. 1]. Using an effect called voltage-controlled magnetic anisotropy (VCMA), the magnetic and magnetodynamic properties of CoFeB ferromagnet, consisting of a few atomic layers, can be directly controlled to modify the microwave frequency, amplitude, damping, and, thus, the threshold current of the SHNO [Fig. 2].

Spintronic Neurons Experimental Result

Experimental result of oscillation property under various gate voltages. Red and yellow regions mean a strong oscillation taking place. One can see that the oscillation property changes with the gate voltage. Credit: Johan Åkerman and Shunsuke Fukami

The researchers also found a giant modulation of SHNO damping up to 42% using voltages from -3 to +1 V in the bow-tied geometry. The demonstrated approach is, therefore, capable of independently turning individual oscillators on/off within a large synchronized oscillatory network driven by a single global drive current. The findings are also valuable since they reveal a new mechanism of energy relaxation in patterned magnetic nanostructures.

Fukami notes that “With readily available energy-efficient independent control of the dynamical state of individual spintronic neurons, we hope to efficiently train large SHNO networks to carry out complex neuromorphic tasks and scale up oscillator-based neuromorphic computing schemes to much larger network sizes.”

Collaboration between Tohoku University and the University of Gothenburg will continue to strengthen as Tohoku University has recently joined the Sweden-Japan collaborative network MIRAI 2.0, a project that aims to enhance research collaborations between Swedish and Japanese universities.

Reference: “Giant voltage-controlled modulation of spin Hall nano-oscillator damping” by Himanshu Fulara, Mohammad Zahedinejad, Roman Khymyn, Mykola Dvornik, Shunsuke Fukami, Shun Kanai, Hideo Ohno and Johan Åkerman, 11 August 2020, Nature Communications.
DOI: 10.1038/s41467-020-17833-x

2 Comments on "Energy-Efficient Tuning of Spintronic Neurons to Imitate the Non-linear Oscillatory Neural Networks of the Human Brain"

  1. Finley Baxter | August 20, 2020 at 9:46 pm | Reply

    The modern improved technology has established an advanced medical sectors and health care delivery system.By the benefits of the advanced technology scientist can discover many useful information regarding human brain and so on!It’s really pleasure working for the people and I also work here gamblizard -coral casino bonus codes and gather information,tips and recommendation for the people who love to know more.I wish scientists improves medical sectors and invent an appropriate vaccine against corona virus!

  2. Human brain is the most typical thing present in the universe. Its mystery is deep than the mystery of this universe. If you want to know something about it, your life is less for this. To utilize your brain you should learn something new for this. I usually do daily research and write down it on a blog. Today I have posted a technology post on a blog and I recommend everyone to read this because I researched more than 8 hours for it, and it is Android Games for Kids Free Download

Leave a comment

Email address is optional. If provided, your email will not be published or shared.