Technology

Published Study Shows Algae Using Raw Plants as a Carbon Energy Source

Feeding Plants This Algae Could Fuel Your Car

Amanda Barry of Los Alamos’s Bioenergy and Biome Sciences group, lead author on the study.

Researchers at Los Alamos National Laboratory and partner institutions provided today the first published report of algae using raw plants as a carbon energy source. The research shows that a freshwater production strain of microalgae, Auxenochlorella protothecoides, is capable of directly degrading and utilizing non-food plant substrates, such as switchgrass, for improved cell growth and lipid productivity, useful for boosting the algae’s potential value as a biofuel.

“Algae hold great potential as a source of renewable fuel due to their ability to produce refinery-compatible diesel and jet fuel precursors,” said Amanda Barry of Los Alamos’s Bioenergy and Biome Sciences group, lead author on the study, out today in the journal Algal Research. “Identifying algae strains that can use plant substrates, such as switchgrass and corn stover (the part of the plant left in a field after harvest) to grow faster and with more lipids suggests that waste plant material can be used to increase the productivity of algae during cultivation for biofuels or bioproducts. Pinpointing the unique enzymes and biochemical pathways algae use to break down complex plant lignocellulose increases our understanding of algal biology, and it opens up new avenues of future designer engineering to improve algal biofuel production strains,” she said.

The current study presents the first example of algae degradation and utilization of untreated plant substrate, the putative genetic and molecular mechanisms behind this degradation, and identifies potential glycosyl hydrolases that may be involved in plant deconstruction.

PublicationCharacterization of plant carbon substrate utilization by Auxenochlorella protothecoides, in Algal Research 34C (2018) pp. 37-48. Authors Brian W. Vogler, Shawn R. Starkenburg, Nilusha Sudasinghe, Jenna Y. Schambach, Joseph A. Rollin, Sivakumar Pattathil and Amanda N. Barry.

Funding: This work was partly supported by a grant from the Laboratory Directed Research and Development Early Career Research Program at Los Alamos National Laboratory and funds provided by the U.S. Department of Energy’s Bioenergy Technologies Office.

Share
By
Nancy Ambrosiano, Los Alamos National Laboratory

Recent Posts

New Banana-Derived Therapy Is Effective Against All Known Coronaviruses and Flu Strains

The potential therapy was derived from a banana protein. A study published on January 13th,…

November 29, 2022

New Report: Earth Is “Unequivocally” in Midst of Climate Emergency

16 of the 35 planetary vital indicators used by the researchers to measure climate change…

November 29, 2022

20 Times More Intense: New Material Will Help Improve Phone and Television Displays

Researchers have created fluorophores between 2.4 and 20 times more intense than analogs. Scientists have…

November 29, 2022

At Risk for Diabetes? Scientists Recommend Doing This

A new study recommends cutting carbs.  Although low-carb diets are often recommended for individuals who…

November 29, 2022

NASA Assesses Launch Pad for Damage After Launch of the World’s Most Powerful Rocket

Following the successful Artemis I liftoff of the world’s most powerful rocket from NASA’s Kennedy…

November 29, 2022

History-Making Event: Orion Goes the (Max) Distance – 268,563 Miles From Earth

NASA Artemis I — Flight Day 13: Orion Goes the (Max) Distance Just after 3…

November 29, 2022