World’s First Wooden Satellite Set To Launch – Can Plywood Survive in Space?

Woodsat in Orbit

The world’s first wooden satellite is on the way, in the shape of the Finnish WISA Woodsat. ESA materials experts are contributing a suite of experimental sensors to the mission as well as helping with pre-flight testing. Credit: Arctic Astronautics

The world’s first wooden satellite is on the way, in the shape of the Finnish WISA Woodsat. ESA materials experts are contributing a suite of experimental sensors to the mission as well as helping with pre-flight testing.

WISA Woodsat is a 10x10x10 cm ‘CubeSat’ – a type of nanosatellite built up from standardized boxes – but with surface panels made from plywood. Woodsat’s only non-wooden external parts are corner aluminum rails used for its deployment into space plus a metal selfie stick.

The mission was initiated by Jari Makinen, Finnish writer and broadcaster. He co-founded a company called Arctic Astronautics, which markets fully functional replicas of orbit-ready CubeSats for education, training and hobby purposes. “I’ve always enjoyed making model planes, involving a lot of wooden parts. Having worked in the space education field, this got me wondering; why don’t we fly any wooden materials in space?

WISA Woodsat. Credit: Arctic Astronautics

“So I had the idea first of all to fly a wooden satellite up to the stratosphere, aboard a weather balloon. That happened in 2017, with a wooden version of KitSat. That having gone well, we decided to upgrade it and actually go into orbit. From there the project just snowballed: we found commercial backing, and secured a berth on an Electron launcher from Rocket Lab in New Zealand.”

ESA sensors to sniff Woodsat’s interior

Riccardo Rampini, heading ESA’s Materials’ Physics and Chemistry section, comments: “It’s been a tight schedule but we welcomed the opportunity to contribute to Woodsat’s payload in return for helping assess its suitability for flight.

“The first item we’re embarking is a pressure sensor, which will allow us to identify the local pressure in onboard cavities in the hours and days after launch into orbit. This is an important factor for the turn-on of high power systems and radio-frequency antennas, because small amounts of molecules in the cavity can potentially cause them harm.

Revealing the WISA Woodsat design. Credit: Arctic Astronautics

“This sensor is being built for us by Sens4 in Denmark, who have done a great job to strip down their standard design to fit limited onboard volume and power constraints.”

ESA materials engineer Bruno Bras adds: “The good thing here is we have ended up devising a low-cost device that could find all kinds of further uses, both in orbit and down on the ground in test environments.”

Next to it will be a straightforward LED with a photoresistor that senses as it lights up. But the LED’s power will come through a 3D-printed electrically-conductive plastic called ‘polyether ether ketone’, or PEEK for short, opening up the prospect of printing power or even data links directly within the bodies of future space missions.

ESA’s technical heart: ESTEC, the European Space Research and Technology Centre, in Noordwijk, the Netherlands. Credit: ESA-G. Porter

ESA materials engineer Orcun Ergincan comments: “The other item is a quartz crystal microbalance, serving as a highly sensitive contamination monitoring tool, measuring any faint deposits in the nanogram range coming from onboard electronics as well as the wooden surfaces themselves. This has been contributed by OpenQCM in Italy. This company is also building the overall printed circuit board stack hosting all three demonstrators with incorporated sensors.”

Plywood for Woodsat

Sponsors for Woodsat include UPM Plywood in Finland, among the largest plywood makers in the world.

“The base material for plywood is birch, and we’re using basically just the same as you’d find in a hardware store or to make furniture,” explains Woodsat chief engineer and Arctic Astronautics co-founder Samuli Nyman.

Made up of more than 20 dedicated experimental facilities and hundreds of instruments overall, ESA’s Materials & Electrical Components Laboratory guarantees an optimal choice of electrical components, materials and processes for ESA missions and external projects, considering the unique environmental challenges involved in building for space, additionally investigating failures to ensure similar issues do not occur on future missions. Credit: ESA

“The main difference is that ordinary plywood is too humid for space uses, so we place our wood in a thermal vacuum chamber to dry it out. Then we also perform atomic layer deposition, adding a very thin aluminum oxide layer – typically used to encapsulate electronics. This should minimize any unwanted vapors from the wood, known as ‘outgassing’ in the space field, while also protecting against the erosive effects of atomic oxygen. We’ll also be testing other varnishes and lacquers on some sections of the wood.”

This highly reactive oxygen variant is found at the fringes of the atmosphere – the result of standard oxygen molecules being broken apart by powerful ultraviolet radiation from the Sun – and was first discovered when it ate away thermal blankets on early Space Shuttle flights.

On Woodsat, ESA materials engineers are embarking a pressure sensor, a test of electrically conductive plastic and a quartz crystal microbalance, all housed on the same printed circuit board, plus a test of shape memory alloy. Credit: ESA

Pre-flight testing suggests the satellite, which will orbit at around 500-600 km altitude in a roughly polar Sun-synchronous orbit, should survive its atomic oxygen exposure. But the wood is expected to be darkened by the ultraviolet radiation of unfiltered sunlight.

Onboard selfie stick

“We have a pair of onboard cameras, with one extended on a selfie stick to look back at the plywood and take pictures to see how it is behaving,” adds Jari. “We want to see color changes, any cracking and so on.”

Designing and manufacturing of the camera boom proved an interesting exercise: the structure needs to be small as it can be within the tiny satellite for launch, then extend out as far as possible when in space.

ESA’s new LEOX, Low Earth Orbit Facility, being fired for the first time in April 2017. This new simulator that fires a laser to generate ‘atomic oxygen’ normally encountered only in low orbits – and known to eat away at satellite surfaces. LEOX generates atomic oxygen at energy levels that are equivalent to orbital speed – 7.8 km/s – to simulate the space environment as closely as possible. It can also test at a higher flow, saving time and money for testing. Purified molecular oxygen is injected into a vacuum chamber with a pulsing laser beam focused onto it. With a purple flash each time the laser is fired, the oxygen is converted into a hot plasma whose rapid expansion is channeled along a conical nozzle. It then dissociates to form a highly energetic beam of atomic oxygen. The new facility is housed in the Materials and Electrical Components Laboratory, one of a suite of labs at ESA’s technical center in the Netherlands, devoted to simulating every aspect of the space environment. Credit: ESA, CC BY-SA 3.0 IGO

“The design was made by Finnish engineering company Huld, pushing 3D printing to its limits,” adds Jari. “For Huld the Woodsat project has already proved an important reference point for entering other space mechanics projects, too.”

As well as the cameras and ESA-donated sensor suite, Woodsat will also carry an amateur radio payload allowing amateurs to relay radio signals and images around the globe. To downlink data from this ‘LoRa’ radio link involves buying a ‘ground station’ costing as little as €10.

“In the end, Woodsat is simply a beautiful object in terms of traditional Nordic design and simplicity, it should be very interesting to see it in orbit,” continues Jari. “Our hope is it helps inspire people to take increased interest in satellites and the space sector as something that already touches all our lives, and is only going to get bigger in future.”

Woodsat is due to launch before the end of this year.


View Comments

  • Ah ha, this is exactly what those space aliens David Icke has been warning us about have been waiting for. With plywood on their doorstep the Martians finally have what they need to invade Earth. Quick call GB News!

European Space Agency (ESA)

Recent Posts

New Cambridge Research Could Improve the Performance of EV Batteries

Irregular lithium ion movement could be hindering electric battery performance. Researchers have discovered that the…

December 2, 2022

Using Vapes May Increase Risk of Developing Dental Cavities

Researchers say e-cigarettes and similar vaping devices are associated with a higher risk for cavities.…

December 2, 2022

Traffic Pollution Has Been Associated With an Increased Risk of Dementia

The meta-analysis reviewed 17 studies studying traffic-related air pollution. According to a meta-analysis recently published…

December 2, 2022

Startling – Elevated Levels of Arsenic Found in Nevada’s Private Wells

Numerous residential wells need improved drinking water treatment and monitoring, according to the study. Private…

December 2, 2022

Surreal Video of Stressed Cells Helps Biologists Solve a Decades-Old Mystery

Crowded rooms: How Carnegie Mellon University and the University of Pittsburgh researchers solved a cell…

December 2, 2022

Never-Before-Seen Molecule: Webb Reveals a “Hot Saturn” Exoplanet Atmosphere

New Webb Space Telescope observations of WASP-39 b reveal a never-before-seen molecule in the atmosphere…

December 2, 2022