Health

Can We Live Longer? Physicist’s Breakthrough Discovery in Genetic Protective Layer

Telomeres DNA Genetics Illustration

Researchers have discovered a new structure of telomeric DNA, which could be key to living longer.

Researchers have discovered a new structure of telomeric DNA with the aid of physics and a tiny magnet. Telomeres are seen by many scientists as the key to living longer. They protect genes from damage but get a bit shorter each time a cell divides. If they become too short, the cell dies. This breakthrough discovery will help us understand aging and disease.

When you hear DNA mentioned, physics is usually not the first scientific discipline that springs to mind. However, John van Noort from the Leiden Institute of Physics (LION) in the Netherlands is one of the scientists who found the new DNA structure. As a biophysicist, he uses methods from physics for biological experiments. This also caught the attention of biologists from Nanyan Technological University in Singapore, who asked him to help study the DNA structure of telomeres. They published the results on September 14 in the scientific journal Nature.

String of beads

Every cell of our bodies contains chromosomes that carry genes that determine our characteristics (what we look like, for instance). At the ends of these chromosomes are telomeres, which protect the chromosomes from damage. They’re a bit like aglets, the plastic tips at the ends of shoelaces.

Figure 1: A cell, chromosome, and telomeres. Credit: Leiden University

Because the DNA between the telomeres is two meters long, it has to be folded to fit in a cell. This is achieved by wrapping the DNA around packages of proteins. Together, the DNA and proteins are known as a nucleosome. These are arranged into something similar to a string of beads, with a nucleosome, a piece of free (or unbound) DNA, a nucleosome, and so on.

This string of beads then folds up even more. How it does so depends on the length of the DNA between the nucleosomes, the beads on the string. Two structures that occur after folding were already known. In one of them, two adjacent beads stick together and free DNA hangs in between (figure 2A). If the piece of DNA between the beads is shorter, the adjacent beads do not manage to stick together. Then two stacks form alongside each other (figure 2B).

In their study, Van Noort and colleagues discovered another telomere structure. Here the nucleosomes are much closer together, so there is no longer any free DNA between the beads. This ultimately creates one big helix, or spiral, of DNA (figure 2C).

Figure 2: The three different DNA structures. Credit: Leiden University

Magnet

The new structure was discovered using a combination of electron microscopy and molecular force spectroscopy. The latter technique comes from Van Noort’s lab. Here one end of the DNA is attached to a glass slide and a tiny magnetic ball is stuck to the other. A set of strong magnets above this ball then pull the string of pearls apart. By measuring the amount of force needed to pull the beads apart one by one, you find out more about how the string is folded. The researchers in Singapore then used an electron microscope to get a better picture of the structure.

Building blocks

Structure, says Van Noort, is “the holy grail of molecular biology.” If we know the structure of the molecules, this will give us more insight into how genes are switched on and off and how enzymes in cells deal with telomeres: how they repair and copy DNA, for example. The discovery of the new telomeric structure will improve our understanding of the building blocks in the body. And that in turn will ultimately help us study aging and diseases such as cancer and develop drugs to fight them.

A telomere is a region of repetitive DNA sequences at the end of a chromosome. Telomeres protect the ends of chromosomes from becoming frayed or tangled. Each time a cell divides, the telomeres become slightly shorter. Eventually, they become so short that the cell can no longer divide successfully, and the cell dies. Credit: National Human Genome Research Institute, NIH

Reference: “Columnar structure of human telomeric chromatin” by Aghil Soman, Sook Yi Wong, Nikolay Korolev, Wahyu Surya, Simon Lattmann, Vinod K. Vogirala, Qinming Chen, Nikolay V. Berezhnoy, John van Noort, Daniela Rhodes and Lars Nordenskiöld, 14 September 2022, Nature.
DOI: 10.1038/s41586-022-05236-5

Share

View Comments

  • Extending the life of all human beings should be the #1 focus on the planet. Instead everyone is focused on self preservation.

    • Really? We of course do want to live longer. But according to many religions, the ultimate eternal life is for souls only, not for physical bodies. If we extend the life too long we might be unable to leave the body when the universe dies/degrades. Thus, it might make us dead at the very end, while some souls will continue to live. The ones who left the body on time and found peace not to come back in physical realm. Just something for you to think about.

    • ...No, the diagram is in Dutch, because it's from Leiden University, as credited in the article. Do a little research before making criticisms.

  • This article reminds me of a Blake Lively movie, “The Age of Adelaide”, in which her character is in a car accident when the car is stuck in freezing cold water, nearly freezing her to death, and then a lightning bolt from heaven hits the car. Not only does this bolt from the blue revives her so she can escape the submerged car wreck, it also, according to the movie’s narrator, creates a condition in her body called “Frozen Telomeres “, so that she never physically ages. I just wondered if that complicated set of accidental circumstances COULD make this “Frozen Telomeres “ effect in real life!

  • There is a saying in Tamil language.It says:"What we know is of palm size and what we don't know is the size of our universe!

By
Leiden University

Recent Posts

Seemingly Impossible: Nanostructure Compresses Light 10,000 Times Thinner Than a Human Hair

This major scientific advance has implications for many fields, including energy-efficient computers and quantum technology.…

November 29, 2022

“Profound Implications” – New Research Details the Microbial Origins of Type 1 Diabetes

A bacterial protein stimulates the reproduction of insulin-producing cells, pointing to a potential treatment. Nearly…

November 29, 2022

Scientists Develop an “Extended Landau Free Energy Model” for Advanced Materials Design

Explainable AI-Based Physical Theory for Advanced Materials Design Scientists develop an “extended Landau free energy…

November 29, 2022

Hidden Ecosystems? NASA’s New Evidence of Vast Life Lurking Beneath Antarctic Ice

Scientists using NASA's Earth observing system find evidence of phytoplankton blooms hidden beneath Antarctic sea…

November 29, 2022

Astronauts on Space Station Open Dragon and Unpack New Bone, Skin Healing Experiments

Launched by a SpaceX Falcon 9 rocket on November 26, the Dragon resupply ship is…

November 29, 2022

New Research Indicates That Mars Was Capable of Supporting Life

Early Mars might have been a warm version of modern Titan and at least as…

November 28, 2022