**A team of Japanese researchers has discovered significant properties of non-Fock states (iNFS) in quantum technology, revealing their stability through multiple linear optics and paving the way for advancements in optical quantum computing and sensing.**

Quantum objects, such as electrons and photons, behave differently from other objects in ways that enable quantum technology. Therein lies the key to unlocking the mystery of quantum entanglement, in which multiple photons exist in multiple modes or frequencies.

In pursuing photonic quantum technologies, previous studies have established the usefulness of Fock states. These are multiphoton, multimode states made possible by cleverly combining a number of one-photon inputs using so-called linear optics. However, some essential and valuable quantum states require more than this photon-by-photon approach.

#### Breakthrough in Non-Fock States Research

Now, a team of researchers from Kyoto University and Hiroshima University has theoretically and experimentally confirmed the unique advantages of non-Fock states — or iNFS — complex quantum states requiring more than a single photon source and linear optical elements.

“We successfully confirmed the existence of iNFS using an optical quantum circuit with multiple photons,” says corresponding author Shigeki Takeuchi at the Graduate School of Engineering.

#### Implications for Optical Quantum Technologies

“Our study will lead to breakthroughs in applications such as optical quantum computers and optical quantum sensing,” adds co-author Geobae Park.

The photon is a promising carrier because it can be transmitted over long distances while preserving its quantum state at constant room temperature. Harnessing many photons in multiple modes would realize long-distance optical quantum cryptography, optical quantum sensing, and optical quantum computing.

#### Challenges in Generating Complex iNFS

“We painstakingly generated a complex type of iNFS by utilizing our *Fourier transform photonic quantum circuit* to manifest two photons in three different pathways, which is the most challenging phenomenon of conditional coherence to achieve,” explains co-author Ryo Okamoto.

#### Comparison With Quantum Entanglement

In addition, this study compared another phenomenon to the widely applied *quantum entanglement*, which appears and disappears by merely traversing a single linear optical element. Quantum entanglement is a quantum state with two or more correlated states in a superposition between two separate systems.

“Surprisingly, this study demonstrates that iNFS properties do not change when passing through a network of many linear optical elements, marking a leap in optical quantum technology,” notes co-author Holger F Hofmann at Hiroshima University.

Takeuchi’s team posits that iNFS exhibits *conditional coherence*, a somewhat mysterious phenomenon, where detecting even one photon signifies the existence of the remaining photons in a superposition of multiple pathways.

#### Future Directions

“Our next phase is realizing larger-scale multiphoton, multimode states, and optical quantum circuit chips,” announces Takeuchi.

This research signifies a potential leap forward in understanding and harnessing quantum phenomena.

Reference: “Realization of photon correlations beyond the linear optics limit” by Geobae Park, Issei Matsumoto, Takayuki Kiyohara, Holger F. Hofmann, Ryo Okamoto and Shigeki Takeuchi, 22 December 2023, *Science Advances*.

DOI: 10.1126/sciadv.adj8146

Low dimensional spacetime matter is the foundation of high-dimensional spacetime matter. No observable photon can be two-dimensional. Physics must respect the scientificity of two-dimensional mathematical models.

Fusion energy is a fact.

⚛️✖️⚛️♾️

Pretty good article

Solid earth makes a fork in the water equals rivers,streams creeks n ponds n etc.

Light in quantum entanglement is….