Listening Like a Spider: The Future of Sound Technology

Bridge Spider (Larinioides sclopetarius)

Larinioides sclopetarius, commonly known as bridge spiders, helped researchers from Binghamton University investigate how spiders listen to their environments through webs as a way to inspire future designs for microphones that would also be able to respond to sound-driven airflow. Credit: Junpeng Lai

Researchers from Binghamton University discovered that spider silk responds uniquely to the velocity of air particles in a sound field, offering a potential new model for highly sensitive, long-distance microphone technology.

Spider silk could be the unexpected key to developing the world’s best microphone. While spiders primarily weave webs to capture insects for food, these sticky strands also play a crucial role in how spiders sense sounds. 

Unlike human eardrums and traditional microphones, which detect sound pressure waves, spider silk responds to changes in the velocities of air particles as they are thrust about by a sound field. This sound velocity detection method remains largely underexplored compared to pressure sensing, but it holds great potential for high-sensitivity, long-distance sound detection.

Researchers from Binghamton University investigated how spiders listen to their environments through webs. They found the webs match the acoustic particle velocity for a wide range of sound frequencies. Ronald Miles will present their work Thursday, May 16, at 10:00 a.m. EDT as part of a joint meeting of the Acoustical Society of America and the Canadian Acoustical Association, running May 13-17 at the Shaw Centre located in downtown Ottawa, Ontario, Canada.

“Most insects that can hear sound use fine hairs or their antennae, which don’t respond to sound pressure,” said Miles, a professor of mechanical engineering. “Instead, these thin structures respond to the motion of the air in a sound field. I wondered how to make an engineered device that would also be able to respond to sound-driven airflow. We tried various man-made fibers that were very thin, but they were also very fragile and difficult to work with. Then, Dr. Jian Zhou was walking in our campus nature preserve and saw a spiderweb blowing in the breeze. He thought spider silk might be a great thing to try.”

Before building such a device, the team had to prove spiderwebs truly responded to sound-driven airflow. To test this hypothesis, they simply opened their lab windows to observe the Larinioides sclopetarius, or bridge spiders, that call the windowsills home. They played sound ranging from 1 Hz to 50 kHz for the spiders and measured the spider silk motion with a laser vibrometer. They found the sound-induced velocity of the silk was the same as the particles in the air surrounding it, confirming the mechanism that these spiders use to detect their prey.

“Because spider silk is, of course, created by spiders, it isn’t practical to incorporate it into the billions of microphones that are made each year,” said Miles. “It does, however, teach us a lot about what mechanical properties are desirable in a microphone and may inspire entirely new designs.”

Be the first to comment on "Listening Like a Spider: The Future of Sound Technology"

Leave a comment

Email address is optional. If provided, your email will not be published or shared.