Stretching the Limits: How Diamond Manipulation Enhances Quantum Bits

Diamond Physics Art Concept

Advancements in quantum networking have been made by stretching diamond films, enabling quantum bits to function more effectively and with less expense, marking a significant step towards practical quantum networks. Credit: SciTechDaily.com

Breakthrough by Argonne, UChicago researchers could help pave way for quantum infrastructure.

In work supported by the Q-NEXT quantum research center, scientists ​stretch” thin films of diamond to create more cost-effective and controllable qubits.

A future quantum network may become less of a stretch thanks to researchers at the University of Chicago, Argonne National Laboratory and Cambridge University.

A team of researchers announced a breakthrough in quantum network engineering: By “stretching” thin films of diamond, they created quantum bits that can operate with significantly reduced equipment and expense. The change also makes the bits easier to control.

The researchers hope the findings, published on November 29 in the journal Physical Review X, can make future quantum networks more feasible.

“This technique lets you dramatically raise the operating temperature of these systems, to the point where it’s much less resource-intensive to operate them,” said Alex High, assistant professor with the Pritzker School of Molecular Engineering, whose lab led the study.

Stretching Thin Films of Diamond

By “stretching” thin films of diamond, researchers have created quantum bits that can operate with significantly reduced equipment and expense. Credit: Peter Allen

Innovations in Diamond-Based Qubits

Quantum bits, or qubits, have unique properties that make them of interest to scientists searching for the future of computing networks—for example, they could be made virtually impervious to hacking attempts. However, there are significant challenges to work out before it could become a widespread, everyday technology.

One of the chief issues lies within the “nodes” that would relay information along a quantum network. The qubits that make up these nodes are very sensitive to heat and vibrations, so scientists must cool them down to extremely low temperatures to work.

“Most qubits today require a special fridge the size of a room and a team of highly trained people to run it, so if you’re picturing an industrial quantum network where you’d have to build one every five or 10 kilometers, now you’re talking about quite a bit of infrastructure and labor,” explained High.

High’s lab worked with researchers from Argonne National Laboratory, a U.S. Department of Energy national lab affiliated with UChicago, to experiment with the materials these qubits are made from to see if they could improve the technology.

One of the most promising types of qubits is made from diamonds. Known as Group IV color centers, these qubits are known for their ability to maintain quantum entanglement for relatively long periods, but to do so they must be cooled down to just a smidge above absolute zero.

The team wanted to tinker with the structure of the material to see what improvements they could make—a difficult task given how hard diamonds are. However, the scientists found that they could “stretch” out the diamond at a molecular level if they laid a thin film of diamond over hot glass. As the glass cools, it shrinks at a slower rate than the diamond, slightly stretching the diamond’s atomic structure—like pavement expands or contracts as the earth cools or warms beneath it, High explained.

Significant Technological Impacts

This stretching, though it only moves the atoms apart an infinitesimal amount, has a dramatic effect on how the material behaves.

First, the qubits could now hold their coherence at temperatures up to 4 Kelvin (or -452°F). That’s still very cold, but it can be achieved with less specialized equipment. “It’s an order of magnitude difference in infrastructure and operating cost,” High said.

Secondly, the change also makes it possible to control the qubits with microwaves. Previous versions had to use light in the optical wavelength to enter information and manipulate the system, which introduced noise and meant the reliability wasn’t perfect. By using the new system and the microwaves, however, the fidelity went up to 99%.

It’s unusual to see improvements in both these areas simultaneously, explained Xinghan Guo, a Ph.D. student in physics in High’s lab and first author on the paper.

“Usually if a system has a longer coherence lifetime, it’s because it’s good at ‘ignoring’ outside interference—which means it is harder to control, because it’s resisting that interference,” he said. “It’s very exciting that by making a very fundamental innovation with materials science, we were able to bridge this dilemma.”

“This technique lets you dramatically raise the operating temperature of these systems, to the point where it’s much less resource-intensive to operate them.”
Alex High

“By understanding the physics at play for Group IV color centers in diamond, we successfully tailored their properties to the needs of quantum applications,” said Argonne National Laboratory scientist Benjamin Pingault, also a co-author on the study. “With the combination of prolonged coherent time and feasible quantum control via microwaves, the path to developing diamond-based devices for quantum networks is clear for tin vacancy centres,” added Mete Atature, a professor of physics with Cambridge University and a co-author on the study.

Reference: “Microwave-Based Quantum Control and Coherence Protection of Tin-Vacancy Spin Qubits in a Strain-Tuned Diamond-Membrane Heterostructure” by Xinghan Guo, Alexander M. Stramma, Zixi Li, William G. Roth, Benchen Huang, Yu Jin, Ryan A. Parker, Jesús Arjona Martínez, Noah Shofer, Cathryn P. Michaels, Carola P. Purser, Martin H. Appel, Evgeny M. Alexeev, Tianle Liu, Andrea C. Ferrari, David D. Awschalom, Nazar Delegan, Benjamin Pingault, Giulia Galli, F. Joseph Heremans, Mete Atatüre and Alexander A. High, 29 November 2023, Physical Review X.
DOI: 10.1103/PhysRevX.13.041037

The researchers used the Pritzker Nanofabrication Facility and Materials Research Science and Engineering Center at UChicago.

Other study authors included Zixi Li, Benchen Huang, Yu Jin, Tianle Lu, Prof. Giulia Galli and Prof. David Awschalom with the University of Chicago; Nazar Delegan and Benjamin Pingault with Argonne National Laboratory; and Alexander Stramma (co-first author), William Roth, Ryan Parker, Jesus Arjona Martinez, Noah Shofer, Cathryn Michales, Carola Purser, Martin Appel, Evgeny Alexeev, and Andrea Ferrari with the University of Cambridge.

Funding: Air Force Office of Scientific Research, U.S. Department of Energy Q-NEXT National Quantum Information Science Research Center, ERC Advanced Grant PEDASTAL, EU Quantum Flagship, National Science Foundation, EPSRC/NQIT, General Sir John Monash Foundation and G-research, Winton Programme and EPSRC DTP, EU Horizon 2020 Marie Sklodowska-Curie Grant.

2 Comments on "Stretching the Limits: How Diamond Manipulation Enhances Quantum Bits"

  1. What are the qubits? Why does quantum entanglement be maintained for relatively long periods must be cooled down to just a smidge above absolute zero?
    According to topological vortex gravitational field theory, the physical essence of quantum is the rotation of topological vortices. The rotation of topological vortices is spin. Spin generates gravitation. Spin generates energy. Spin generates evolution. Spin generates time. Each topological vortex is a quantum clock.
    In the interaction of topological vortices, the world is an interconnected whole. Each particles has its own phase field. Every particles maintain the state of themselves in space and time through the interaction and balance of these phase fields.

  2. The interaction between low dimensional spacetime matter is crucial for humanity to understand the properties of high-dimensional spacetime matter. Mathematics is the language of physics to understand the universe. Physics must respect the authenticity of mathematical graphics in low dimensional spacetime.

Leave a comment

Email address is optional. If provided, your email will not be published or shared.