Each Year Billions of Tons of Ocean Water Falls Into the Deep Earth Lower Mantle Where It Has Extraordinary Oxidation Power

Earth's Lower Mantle Schematic Artwork

(Click image for full view.) The schematic artwork shows a boundary within the lower mantle at the depth of 1900 km (1180 mi). Below 1900 km, the interaction between water and mantle is triggered. Credit: ©Science China Press

If we took a journey from Earth’s surface to the center, the midway point locates roughly at 1900 km (1180 mi) depth in the lower mantle. The lower mantle ranges from 660 to 2,900 km (410 to 1800 mi) depth and occupies 55% of our planet by volume. The chemical composition of the lower mantle is rather simple. It has long been pictured as being made up of 2 major minerals (~95%), namely bridgmanite and ferropericlase. Until recently, this model is directly challenged by a set of discoveries in the lower mantle.

“One of the major lower mantle compositions, ferropericlase (Mg,Fe)O, turns into a pyrite-type structure upon meeting water. This intriguing chemical reaction only occurs at Earth’s deep lower mantle which is defined in depths between 1900 and 2900 km (1180 and 1800 mi)” said Qingyang Hu from HPSTAR. “The reaction produces so-called oxygen excessive phases, or simply superoxides. The lower mantle is oxidized in the presence of water.” Generally, when all the oxygen atoms in a compound are bonded with metal atoms, they are called oxides. However, if a compound has paired oxygen atoms, like oxygen-oxygen bonding, it becomes a superoxide. Although superoxide is rarely found in nature, it might be common in Earth’s deep lower mantle.

“We also found that olivine and its high-pressure phase wadsleyite, the dominating minerals in the upper mantle, decompose to generate superoxides when subducting down into the deep mantle with water,” added Jin Liu from HPSTAR. Few approaches are available for scientists to probe into the lower mantle mineralogy given its depth. “Our experiments are very challenging. We input appropriate parameters like pressure, temperature, and starting minerals. Then we investigated the outputs including chemical reactions, new mineral assemblages, and their density profiles. Those parameters allow us to better constrain the nature of the lower mantle and its oxidation state.” Contrary to the paradigm that the lower mantle is highly reduced, our results indicate that the deep lower mantle is at least locally oxidized wherever water is present.

The team members proceeded with minerals existing on Earth’s surface, by squeezing them between two pieces of diamond anvils to generate about 100,000,000 times the atmospheric pressure at sea level, heating them up using infrared laser, before analyzing the samples using a battery of x-ray and electron probes. The experiments have mimicked the extreme pressure-temperatures conditions found in Earth’s deep lower mantle.

Previous experiments explored a dry mineral assembly in the absence of water. Those experiments reported that bridgmanite (and/or post-bridgmanite) and ferropericlase are the most abundant and stable minerals throughout the lower mantle. However, when water is introduced, ferropericlase would be partially oxidized to superoxide under the deep lower mantle conditions. The superoxide is verified to stay in harmony with bridgmanite and post-bridgmanite.

This new water-mantle chemistry can be closely linked to the water cycling in the solid Earth. Every year, billions of tons of ocean water falls into the deep Earth at tectonic plate boundaries. While some water returns via underwater volcanoes and hot vents, others go deep into the Earth’s interiors. “Our experiments indicate that deep water is an essential part of mantle chemistry. The water cycling can extend to the deep lower mantle where water has extraordinary oxidation power, producing highly oxidized superoxide and releasing hydrogen,” suggested Dr. Ho-kwang Mao from HPSTAR. “The lower mantle can be oxidized and reduced at the same time.”

Reference: “Mineralogy of the deep lower mantle in the presence of H2O” by Qingyang Hu, Jin Liu, Jiuhua Chen, Bingmin Yan, Yue Meng, Vitali B Prakapenka, Wendy L Mao and Ho-kwang Mao, 13 May 2020, National Science Review.
DOI: 10.1093/nsr/nwaa098

5 Comments on "Each Year Billions of Tons of Ocean Water Falls Into the Deep Earth Lower Mantle Where It Has Extraordinary Oxidation Power"

  1. So the theory that the Earth is producing and exuding hydrogen is validated!

  2. I would call it liberating hydrogen.

  3. Maurice Taylor | May 31, 2020 at 8:17 am | Reply

    So..this is where all that water goes

  4. Hydrogen produced in huge amounts under great pressure with carbon from decomposed ocean life, ocean water, that falls deep into the mantle and BAM a nonstop mass naturally occurring production of Hydrocarbons. Finite oil my as.

  5. Greg Fedorchuk | May 31, 2020 at 3:23 pm | Reply

    Mike’s scenario involves production of oil at a depth of 1900 kilometers. BAM, too deep for us to retreve it. And, production of volatile hydrocarbons at the temperature of molten rock. BAM, unlikely to produce fuel. And, how much organic matter is sucked down each day – compared to millions of barrels used each day. BAM, finite oil dispute your as.

Leave a comment

Email address is optional. If provided, your email will not be published or shared.